Skip to main content
Log in

Spatial distribution of Pb and Zn in soils under native vegetation in Southeast Brazil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Heavy metals can play an important biological role as micronutrients but also as potentially toxic elements (PTEs). Understanding the natural concentrations of PTEs-Pb and Zn included-in soils allows for the identification and monitoring of contaminated areas and their role in environmental risk assessment. In this study, we aim to determine semi-total or natural and available concentrations of Pb and Zn in topsoils (0–20 cm depth) from 337 samples under native vegetation in the State of Minas Gerais, Brazil. Additionally, we sought to interpret the spatial geochemical variability using geostatistical techniques and quality reference values for these elements in soils were established. The semi-total concentrations were determined by flame and graphite furnace atomic absorption after microwave-assisted nitric acid digestion method. The available concentrations were extracted using the Mehlich-I extractor and determined by atomic absorption spectrometer. Spatial variability was modeled using semivariance estimators: Matheron’s classic, Cressie and Hawkins’ robust, and Cressie median estimators, the last two being less sensitive to extreme values. This allowed the construction of digital maps through kriging of semi-total Pb and Zn contents using the median estimator, as well as other soil properties by the robust estimator. The dominance of acidic pH and low CEC values reflects highly weathered low-fertility soils. Semi-total Pb contents ranged from 2.1 to 278 mg kg−1 (median: 9.35 mg kg−1) whereas semi-total Zn contents ranged from 2.7 to 495 mg kg−1 (median: 7.7 mg kg−1). The available Pb contents ranged from 0.1 to 6.92 mg kg−1 (median: 0.54 mg kg−1) whereas available Zn contents ranged from 0.1 to 78.2 mg kg−1 (median: 0.32 mg kg−1). The highest Pb and Zn concentrations were observed near Januária, in the northern part of the territory, probably on limestone rocks from the Bambuí group. Finally, the QRVs for Pb and Zn in natural soils were lower than their background values from other Brazilian region and below the prevention values suggested by Brazilian environmental regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbaslou, H., Martin, F., Abtahi, A., & Moore, F. (2014). Trace element concentrations and background values in the arid soils of Hormozgan Province of southern Iran. Archives of Agronomy and Soil Science, 60(8), 1125–1143. https://doi.org/10.1080/03650340.2013.864387

    Article  CAS  Google Scholar 

  • Alecrim, J. D. (1982). Mineral resources of the State of Minas Gerais (p. 299)

    Google Scholar 

  • Alfaro, M. R., Montero, A., Ugarte, O. M., Nascimento, C. W. A., Aguiar Accioly, A. M., Biondi, C. M., & Silva, Y. J. A. B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187(1), 4198. https://doi.org/10.1007/s10661-014-4198-3

    Article  CAS  PubMed  Google Scholar 

  • Almeida Júnior, A. B., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., & Barros, F. M. R. (2016). Background and reference values of metals in soils from Paraíba State, Brazil. Revista Brasileira De Ciência Do Solo. https://doi.org/10.1590/18069657rbcs20150122

    Article  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alvarez, V. V. H., Novais, R. F., Barros, N. F., Cantarutti, R. B., & Lopes, A. S. (1999). Interpretação dos resultados das análises de solos. In A. C. Ribeiro, P. T. G. Guimarães, & V. V. H. Alvarez (Eds.), Recomendações para o uso de corretivos e fertilizantes em Minas Gerais 5a aproximação (pp. 25–36). Comissão de Fertilidade do Solo do Estado de Minas Gerais.

    Google Scholar 

  • American Public Health Association—APHA (2012). Standard Methods for the Examination of Water and Waste Water. 22nd Edition, American Public Health Association, American Water Works Association, Water Environment Federation

  • Bednářová, Z., Kalina, J., Hájek, O., Sáňka, M., & Komprdová, K. (2016). Spatial distribution and risk assessment of metals in agricultural soils. Geoderma, 284, 113–121.

    Article  Google Scholar 

  • Biondi, C. M., Nascimento, C. W. A., Fabricio Neto, A. B., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira De Ciência Do Solo, 35(3), 1057–1066. https://doi.org/10.1590/S0100-06832011000300039

    Article  CAS  Google Scholar 

  • Bispo, F. H. A., Menezes, M. D., Fontana, A., Sarkis, J. E. S., Gonçalves, C. M., Carvalho, T. S., et al. (2021). Rare earth elements (REEs): Geochemical patterns and contamination aspects in Brazilian benchmark soils. Environmental Pollution, 289(August), 117972. https://doi.org/10.1016/j.envpol.2021.117972

    Article  CAS  PubMed  Google Scholar 

  • Boechat, C. L., Duarte, L. D. S. L., Sena, A. F. S., et al. (2020). Background concentrations and quality reference values for potentially toxic elements in soils of Piauí state, Brazil. Environmental Monitoring and Assessment, 192, 723. https://doi.org/10.1007/s10661-020-08656-w

    Article  CAS  PubMed  Google Scholar 

  • Burak, D. L., Fontes, M. P. F., Santos, N. T., Monteiro, L. V. S., Martins, E. S., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma, 160(2), 131–142. https://doi.org/10.1016/j.geoderma.2010.08.007

    Article  CAS  Google Scholar 

  • Caires, S.M. (2009). Determinação dos teores naturais de metais pesados em solos do Estado de Minas Gerais como subsídio ao estabelecimento de valores de referência de qualidade. In Ph.D Thesis. Universidade Federal de Viçosa—UFV.

  • Cândido, G. S., Lima, F., Oliveira, J. R., Vasques, I. C. F., Prianti, M. T. A., Martins, G. C., Pereira, P., Engelhardt, M., Bispo, F. H. A., Guilherme, L. R. G., & Marques, J. J. (2023). Accumulation of lead and nutrients in soybean and sorghum cultivated in lead-affected tropical soils. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2023.2256793

    Article  Google Scholar 

  • Carvalho, G. S., Oliveira, J. R., Vasques, I. C. F., Justi, M., Santana, M. L. T., Job, M. T. P., & Marques, J. J. (2021a). Steel mill waste effects on rice growth: Comparison of chemical extractants on lead and zinc availability. Environmental Science and Pollution Research, 28(20), 25844–25857. https://doi.org/10.1007/s11356-021-12420-z

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, G. S., Oliveira, J. R., Vasques, I. C. F., Santana, M. L. T., Justi, M., Job, M. T. P., et al. (2021b). Steel mill waste application in soil: Dynamics of potentially toxic elements in rice and health risk perspectives. Environmental Science and Pollution Research, 28(35), 48427–48437. https://doi.org/10.1007/s11356-021-14020-3

    Article  CAS  PubMed  Google Scholar 

  • Companhia Mineradora de Minas Gerais—COMIG (2013). Mapa geológico do Estado de Minas Gerais. Belo Horizonte, 2013. Available at em: http://www.codemig.com.br/atuacao/mineracao/mapeamento-geologico/2013-mapa-geologico-de-minas-gerais/. Accessed on January 2022.

  • Conselho Nacional do Meio Ambiente—CONAMA (2009). Resolution no 420 of December 28th, 2009. http://www.mma.gov.br/port/conama/res/res09/res42009.pdf

  • Cressie, N. A. C. (1993). Statistics for spatial data. Wiley. https://doi.org/10.1002/9781119115151

    Book  Google Scholar 

  • Cressie, N., & Hawkins, D. M. (1980). Robust estimation of the variogram: I. Journal of the International Association for Mathematical Geology, 12(2), 115–125. https://doi.org/10.1007/BF01035243

    Article  MathSciNet  Google Scholar 

  • da Silva, C. S., Pereira, M. G., Delgado, R. C., & Assunção, S. A. (2017). Espacialização das frações da matéria orgânica do solo sob um sistema agroflorestal, na mata atlântica, Brasil. Cerne, 23(2), 249–256. https://doi.org/10.1590/01047760201723022318

    Article  Google Scholar 

  • Dardenne, M. A., & Schobbenhaus, C. (2001). Metalogênese do Brasil (p. 392). Editora UnB.

    Google Scholar 

  • Deschamps, E., Ciminelli, V. S. T., Lange, F. T., Matschullat, J., Raue, B., & Schmidt, H. (2002). Soil and sediment geochemistry of the iron quadrangle, Brazil the case of arsenic. Journal of Soils and Sediments, 2(4), 216–222. https://doi.org/10.1007/BF02991043

    Article  CAS  Google Scholar 

  • de Souza, J. J. L. L., Abrahão, W. A. P., de Mello, J. W. V., Silva, J., Costa, L. M., & de Oliveira, T. S. (2015). Geochemistry and spatial variability of metal(loid) concentrations in soils of the state of Minas Gerais, Brazil. Science of the Total Environment, 505, 338–349. https://doi.org/10.1016/j.scitotenv.2014.09.098

    Article  CAS  PubMed  Google Scholar 

  • Conselho Estadual de Política Ambiental—COPAM (2011). Deliberação Normativa COPAM n. 166, de 29 de junho de 2011, que altera o Anexo I da Deliberação Normativa Conjunta COPAM CERH n. 2 de 6 de setembro de 2010, e estabelece os Valores de Referência de Qualidade (VRQs) dos solos do Estado de Minas Gerais. Diário Oficial [do] Estado de Minas Gerais, Belo Horizonte, MG, n. 140, de 27 jul. 2011. p. 18–20.

  • Fabricio Neta, A. B., do Nascimento, C. W. A., Biondi, C. M., Straaten, P., & Bittar, S. M. B. (2018). Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. Environmental Geochemistry and Health, 40(1), 163–173. https://doi.org/10.1007/s10653-016-9890-5

    Article  CAS  PubMed  Google Scholar 

  • Furley, P. A. (1999). The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecology and Biogeography, 8, 223–224. https://doi.org/10.1046/j.1466-822X.1999.00142.x

    Article  Google Scholar 

  • Gee, W. G., & Or, D. (2002). Particle-size analysis. In J. Dane & G. C. Topp (Eds.), Methods of Soil Analysis: Part 4 SSSA Book Ser 5 SSSA (pp. 255–293)

    Google Scholar 

  • Goovaerts, P. (2007). Geostatistics for natural resources evaluation. Oxford University Press.

    Google Scholar 

  • Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P., & Kumar, A. (2019). Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Science of the Total Environment, 651, 2927–2942. https://doi.org/10.1016/j.scitotenv.2018.10.047

    Article  CAS  PubMed  Google Scholar 

  • Hamid, Y., Tang, L., Yaseen, M., Hussain, B., Zehra, A., Aziz, M. Z., et al. (2019). Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere, 214, 259–268. https://doi.org/10.1016/j.chemosphere.2018.09.113

    Article  CAS  PubMed  Google Scholar 

  • INSTITUTO NACIONAL DE METEOROLOGIA—INMET. (2021). Estações convencionais. Available in http://www.inmet.gov.br/portal/index.php?r=estacoes/ estacoes convencionais. Accessed in 15 December 2022.

  • IUSS Working Group WRB (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902

  • Kabata-Pendias, A., & Szteke, B. (2015). Trace elements in abiotic and biotic environments. Taylor & Francis. https://doi.org/10.1201/b18198

    Book  Google Scholar 

  • Licht, O. A. B., Xuejing, X., Qin, Z., Miyazawa, M., Ferreira, F. J. F., & Plawiak, R. A. B. (2006). Average reference values of geochemical and geophysical variables in stream sediments and soils, State of Paraná, Brazil. Boletim Paranaense De Geociências, 58(1), 59–87.

    Google Scholar 

  • Lopes, A. S., & Cox, F. R. (1977). Cerrado vegetation in Brazil: An edaphic gradient 1. Agronomy Journal, 69(5), 828–831. https://doi.org/10.2134/agronj1977.00021962006900050025x

    Article  Google Scholar 

  • Lopes, A. S., & Guilherme, L. R. G. (2016). A career perspective on soil management in the Cerrado region of Brazil. Advances in Agronomy (pp. 1–72). Academic Press. https://doi.org/10.1016/bs.agron.2015.12.004

    Chapter  Google Scholar 

  • Lopes, G., Costa, E. T. S., Penido, E. S., et al. (2015). Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environmental Science and Pollution Research, 22, 13442–13452. https://doi.org/10.1007/s11356-015-4613-5

    Article  CAS  PubMed  Google Scholar 

  • Lopes, G., Li, W., Siebecker, M. G., Sparks, D. L., & Guilherme, L. R. G. (2021). Combining zinc desorption with EXAFS speciation analysis to understand Zn mobility in mining and smelting affected soils in Minas Gerais, Brazil. Science of the Total Environment, 754, 142450. https://doi.org/10.1016/j.scitotenv.2020.142450

    Article  CAS  PubMed  Google Scholar 

  • Matérn, B. (1960). Spatial variation: Stochastic models and their applications to problems in forest surveys and other sampling investigations. Esselte, 49, 1–144.

    MathSciNet  Google Scholar 

  • Matheron, G. (1962). Traité de géostatistique appliquée. Tome I. Mémoires du Bureau de Recherches Géologiques et Minières (14th ed.). Editions Technip.

    Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

    Article  CAS  Google Scholar 

  • Matschullat, J., Hofle, S., da Silva, J., Mello, J., Melo, G., Pleßow, A., & Reimann, C. (2012). A soil geochemical background for northeastern Brazil. Geochemistry: Exploration, Environment, Analysis, 12, 197–209. https://doi.org/10.1144/1467-7873/10-RA-046

    Article  CAS  Google Scholar 

  • Mazhari, S. A., Sharifiyan Attar, R., & Haghighi, F. (2017). Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran. Journal of African Earth Sciences, 134, 106–112. https://doi.org/10.1016/j.jafrearsci.2017.06.017

    Article  CAS  Google Scholar 

  • McLean, E. O., Heddleson, M. R., Bartlett, R. J., & Holowaychuk, N. (1958). Aluminum in soils: I. Extraction methods and magnitudes in clays and Ohio Soils1. Soil Science Society of America Journal, 22(5), 382. https://doi.org/10.2136/sssaj1958.03615995002200050005x

    Article  CAS  Google Scholar 

  • Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4 (p. 195). University of North Carolina.

    Google Scholar 

  • Mello, J. W. V., & Abrahão, W. A. P. (2013). Valores de referência de qualidade para elementos traço nos solos de Minas Gerais e Espírito Santo: os bastidores de uma experiência. In V. V. H. Alvarez, R. B. Cantarutti, & R. F. Novais (Eds.), Solos contaminados no Brasil: o desafio de definir valores de referência (Vol. 38, pp. 12–17)

    Google Scholar 

  • Melo, V. F., Buschle, B., Souza, L. C. P., & Bonfleur, E. J. (2017). Reference values for potentially harmful elements in soils from Atlantic Rainforest, Brazil. Journal of Geochemical Exploration, 181, 138–147. https://doi.org/10.1016/j.gexplo.2017.07.009

    Article  CAS  Google Scholar 

  • Nogueira, T. A. R., Abreu-Junior, C. H., Alleoni, L. R. F., He, Z., Soares, M. R., dos Santos Vieira, C., et al. (2018). Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. Journal of Environmental Management, 221(May), 10–19. https://doi.org/10.1016/j.jenvman.2018.05.048

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, J. R., Vasques, I. C. F., Lima, F. R. D., Carvalho, G. S., Job, M. T. P., de Oliveira, T. S., & Marques, J. J. (2022). Mercury adsorption in tropical soils and zeolite: Characterization by Fourier-transform infrared spectroscopy. Archives of Agronomy and Soil Science, 68(5), 630–645. https://doi.org/10.1080/03650340.2020.1845318

    Article  CAS  Google Scholar 

  • Paye, H. D. S., Mello, J. W. V. D., Abrahão, W. A. P., Fernandes Filho, E. I., Dias, L. C. P., Castro, M. L. O., et al. (2010). Valores de referência de qualidade para metais pesados em solos no Estado do Espírito Santo. Revista Brasileira De Ciência Do Solo, 34(6), 2041–2051. https://doi.org/10.1590/S0100-06832010000600028

    Article  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Rassaei, F. (2023). The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium-polluted solos. Communications in Soil Science and Plant Analysis, 54(10), 1426–1446. https://doi.org/10.1080/00103624.2022.2146704

    Article  CAS  Google Scholar 

  • Reimann, C., & Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648. https://doi.org/10.1016/j.scitotenv.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro Júnior, P. J., & Diggle, P. J. (2001). GeoR: A package for geostatistical analysis. R-News, 1, 15–18.

    Google Scholar 

  • Rolka, E., & Wyszkowski, M. (2021). Availability of trace elements in soil with simulated cadmium Lead and Zinc Pollution. Minerals, 11(8), 879. https://doi.org/10.3390/min11080879

    Article  CAS  Google Scholar 

  • Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J. F.; Coelho, M.R.; Almeida, J. A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. (2018). Sistema Brasileiro de Classificação de Solos. 5 ed. Brasília – DF, Embrapa, Brazil. Accessed: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1094003

  • Scolforo, J.R.S; Mello, J.M.; Silva, C.P.C. (2008). Inventário florestal de Minas Gerais: Floresta Estacional Semidecidual e Ombrófila: florística, estrutura, diversidade, similaridade, distribuição diamétrica e de altura, volumetria, tendências de crescimento e áreas aptas para manejo florestal. Lavras: UFLA. 816 p.

  • Skorupa, A. L., Guilherme, L. R. G., Curi, N., Silva, C. P. C., Scolforo, J. R. S., & Marques, J. J. (2012). Propriedades de Solos sob Vegetação Nativa em Minas Gerais: Distribuição por Fitofisionomia. Revista Brasileira De Ciencia Do Solo, 36(3), 11–22.

    Article  Google Scholar 

  • Smith, D.B., Cannon, W.F., Woodruff, L.G., Solano, F., Kilburn, J.E., & Fey, D.L. (2013). Geochemical and mineralogical data for soils of the conterminous United States. U.S. Geological Survey Data Series, 801(April), 1–26.

  • Soil Survey Staff (2014). Keys to Soil Taxonomy. Twelfth ed. United States Department of Agriculture Natural Resources Conservation Service (USA).

  • Świercz, A., & Smorzewska, E. (2015). Variations in the zinc and lead content in surface layers of urban soils in Kielce (Poland) with regard to land use. Journal of Elementology, 20(2), 449–461. https://doi.org/10.5601/jelem.2014.19.2.680

    Article  Google Scholar 

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. Rio De Janeiro, 997, 212.

    Google Scholar 

  • Tóth, G., Hermann, T., Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309. https://doi.org/10.1016/j.envint.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  • United States Environmental Protection Agency—USEPA (2007). Method 3051A: microwave-assisted acid digestion of sediments, sludges, soils, and oils. (Technical Resource Document, EPA SW 846). 2007. Available at: http://www.epa.gov/wastes/hazard/ testmethods/sw846/pdfs/3051a.pdf.

  • Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (p. 271). Wiley.

    Google Scholar 

  • Wilson, M. A., Burt, R., Indorante, S. J., Jenkins, A. B., Chiaretti, J. V., Ulmer, M. G., & Scheyer, J. M. (2008). Geochemistry in the modern soil survey program. Environmental Monitoring and Assessment, 139(1–3), 151–171. https://doi.org/10.1007/s10661-007-9822-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors recognize the support of the Department of Soil Science at the Federal University of Lavras (UFLA), the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Minas Gerais State Foundation (FAPEMIG) for providing financial support and scholarship to carry out this research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions Section All authors contributed to the manuscript. ALAS: conceptualization—formulation of the research goals and aims, methodology—development of laboratory analysis; Formal analysis - Application of statistical techniques to analyze the data; Investigation - Conducting the research and investigation process, data collection; Writing - original draft—preparation, creation, and presentation of the published work, writing the initial draft; writing—review & editing—critical review, commentaries, and revision, in all stages of the manuscript. FHAB: conceptualization—formulation of research goals and aims; formal analysis—application of statistical techniques to analyze the data; investigation—conducting the research and investigation process, data collection; writing—review & editing—critical review, commentaries, and revision of the final draft. SAA: methodology—development of laboratory analysis; formal analysis—application of statistical techniques to analyze the data; investigation—conducting the research and investigation process, data collection; writing—review & editing—critical review, commentaries, and revision of initial and final drafts. FRDL and JRO: conceptualization—formulation of research goals and aims; methodology—development of laboratory analysis; formal analysis—application of statistical techniques to analyze the data; investigation—conducting the research and investigation process, data collection; writing—review & editing—critical review, commentaries, and revision of initial and final drafts. MBT, JRSS, and YLZ: methodology—formulation of laboratory analysis; writing—review & editing—critical review, commentaries, and revision of the final draft. LRGG and JJM: conceptualization—formulation of research goals and aims; investigation—conducting the research and investigation process, data collection; resources—Provision of materials and reagents of laboratory; writing—review & editing—critical review, commentaries, and revision in all publication stages; supervision—oversight and leadership responsibility for the research activity; planning and execution, including mentorship to the core team; project administration—management and coordination responsibility for the research activity planning and execution; funding acquisition—acquisition of the financial support for the project leading to this publication.

Corresponding author

Correspondence to João José Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests or any other known competitors or personal relationships that may have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alba L. A. Skorupa: in memoriam.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 720 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorupa, A.L.A., Bispo, F.H.A., Assunção, S.A. et al. Spatial distribution of Pb and Zn in soils under native vegetation in Southeast Brazil. Environ Geochem Health 46, 84 (2024). https://doi.org/10.1007/s10653-024-01859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01859-x

Keywords

Navigation