Skip to main content
Log in

Bromide induced the formation of brominated halonitromethanes from aspartic acid in the UV/chlorine disinfection process

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Brominated halonitromethanes (Br-HNMs) are generated in water disinfection processes and present high toxicity to human health. This work used aspartic acid (ASP) as the precursor to reveal that bromide (Br) induced the production of Br-HNMs in the UV/chlorine disinfection process. Consequently, six Br-HNMs were identified, and their yields presented an increasing and then declining evolution over the reaction time from 0 to 15 min. Also, the total Br-HNMs yield reached the maximum of 251.1 μg L−1 at 5 min and then declined to 107.1 μg L−1. The total Br-HNMs yield increased from 2.40 to 251.14 μg L−1 with the increase of Cl2:Br ratios from 0.25 to 3.0 by increasing free chlorine dosage with a fixed Br concentration, and it increased from 207.59 to 251.14 μg L−1 and then decreased to 93.44 μg L−1 with the increase of Cl2:Br ratio from 1.0 to 3.6 by increasing Br concentration with a fixed free chlorine dosage. Besides, the total Br-HNMs yield reached the highest value (251.14 μg L−1) at pH 7.0 and the lowest value (74.20 μg L−1) at pH 8.0. Subsequently, the possible reaction mechanism of Br-HNMs generated from ASP was deduced, and the changes in toxicity of Br-HNMs also followed an increasing and then declining trend, closely relating to Br-HNMs yields and Br utilization. This work explored and illustrated the yields, influence factors, reaction mechanisms, and toxicity of Br-HNMs formed from Br containing ASP water during UV/chlorine disinfection, which might help to control Br-HNMs formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used to support the findings of this study are included within the article.

References

  • Cai, L., Li, L., Yu, S., Guo, J., Kuppers, S., & Dong, L. (2019). Formation of odorous by-products during chlorination of major amino acids in East Taihu Lake: Impacts of UV, UV/PS and UV/H2O2 pre-treatments. Water Research, 162, 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Z., Yu, X., Zheng, Y., Aghdam, E., Sun, B., Song, M., Wang, A., Han, J., & Zhang, J. (2022). Micropollutant abatement by the UV/chloramine process in potable water reuse: A review. Journal of Hazardous Materials, 424, 127341.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S., Zhang, X., Yang, X., Shang, C., Song, W., Fang, J., & Pan, Y. (2018). The multiple role of bromide ion in PPCPs degradation under UV/Chlorine treatment. Environmental Science and Technology, 52(4), 1806–1816.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chu, W., Li, D., Gao, N., Yin, D., Zhang, Y., & Zhu, Y. (2015). Comparison of free amino acids and short oligopeptides for the formation of trihalomethanes and haloacetonitriles during chlorination: Effect of peptide bond and pre-oxidation. Chemical Engineering Journal, 281, 623–631.

    Article  CAS  Google Scholar 

  • Deng, L., Huang, C., & Wang, Y. (2014). Effects of combined UV and chlorine treatment on the formation of trichloronitromethane from amine precursors. Environmental Science and Technology, 48(5), 2697–2705.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Deng, L., Huang, T., Wen, L., Hu, J., Prasad Singh, R., & Tan, C. (2022a). Impact of bromide ion on the formation and transformation of halonitromethanes from poly(diallyldimethylammonium chloride) during the UV/chlorine treatment. Separation and Purification Technology, 287, 120520.

    Article  CAS  Google Scholar 

  • Deng, L., Luo, W., Chi, X., Huang, T., Wen, L., Dong, H., Wu, M., & Hu, J. (2022b). Formation of halonitromethanes from methylamine in the presence of bromide during UV/Cl2 disinfection. Journal of Environmental Sciences, 117, 28–36.

    Article  CAS  Google Scholar 

  • Deng, L., Wen, L., Dai, W., & Singh, R. P. (2018). Impact of tryptophan on the formation of TCNM in the process of UV/chlorine disinfection. Environmental Science and Pollution Research, 25(23), 23227–23235.

    Article  CAS  PubMed  Google Scholar 

  • Ding, C., Li, N., Zhang, T., & Zhang, M. (2016). Aspartic acid generated in the process of chlorination disinfection by-product dichloroacetonitrile. Environmental Science, 37(05), 1831–1836. in Chinese.

    Google Scholar 

  • Ding, S., & Chu, W. (2017). Recent advances in the analysis of nitrogenous disinfection by-products. Trends in Environmental Analytical Chemistry, 14, 19–27.

    Article  CAS  Google Scholar 

  • Dong, H., Qiang, Z., Hu, J., & Qu, J. (2017). Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes. Water Research, 121, 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J., Ling, L., & Shang, C. (2013). Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis. Water Research, 47(3), 1257–1266.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J., Zhao, Q., Fan, C., Shang, C., Fu, Y., & Zhang, X. (2017). Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps. Chemosphere, 183, 582–588.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gao, Z., Lin, Y., Xu, B., Xia, Y., Hu, C., Zhang, T., Qian, H., Cao, T., & Gao, N. (2020). Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. Water Research, 182, 116035.

    Article  CAS  PubMed  Google Scholar 

  • Guo, K., Wu, Z., Shang, C., Yao, B., Hou, S., Yang, X., Song, W., & Fang, J. (2017). Radical chemistry and structural relationships of PPCP degradation by UV/Chlorine treatment in simulated drinking water. Environmental Science and Technology, 51(18), 10431–10439.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Guo, K., Zheng, S., Zhang, X., Zhao, L., Ji, S., Chen, C., Wu, Z., Wang, D., & Fang, J. (2020). Roles of bromine radicals and hydroxyl radicals in the degradation of micropollutants by the UV/bromine process. Environmental Science and Technology, 54(10), 6415–6426.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Guo, Z., Lin, Y., Xu, B., Hu, C., Huang, H., Zhang, T., Chu, W., & Gao, N. (2016). Factors affecting THM, HAN and HNM formation during UV-chlor(am)ination of drinking water. Chemical Engineering Journal, 306, 1180–1188.

    Article  CAS  Google Scholar 

  • Hansen, K. M. S., Willach, S., Mosbæk, H., & Andersen, H. R. (2012). Particles in swimming pool filters—Does pH determine the DBP formation? Chemosphere, 87(3), 241–247.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Heeb, M. B., Criquet, J., Zimmermann-Steffens, S. G., & von Gunten, U. (2014). Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds—A critical review. Water Research, 48, 15–42.

    Article  CAS  PubMed  Google Scholar 

  • Hong, H., Qian, L., Xiao, Z., Zhang, J., Chen, J., Lin, H., Yu, H., Shen, L., & Liang, Y. (2015). Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin. Journal of Hydrology, 531, 802–809.

    Article  CAS  ADS  Google Scholar 

  • How, Z. T., Linge, K. L., Busetti, F., & Joll, C. A. (2016). Organic chloramines in drinking water: An assessment of formation, stability, reactivity and risk. Water Research, 93, 65–73.

    Article  CAS  PubMed  Google Scholar 

  • How, Z. T., Linge, K. L., Busetti, F., & Joll, C. A. (2017). Chlorination of amino acids: Reaction pathways and reaction rates. Environmental Science and Technology, 51(9), 4870–4876.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hu, J., Song, H., Addison, J. W., & Karanfil, T. (2010a). Halonitromethane formation potentials in drinking waters. Water Research, 44(1), 105–114.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Song, H., & Karanfil, T. (2010b). Comparative Analysis of halonitromethane and trihalomethane formation and speciation in drinking water: The effects of disinfectants, pH, bromide, and nitrite. Environmental Science and Technology, 44(2), 794–799.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hua, Z., Li, D., Wu, Z., Wang, D., Cui, Y., Huang, X., Fang, J., & An, T. (2021). DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide. Water Research, 188, 116549.

    Article  CAS  PubMed  Google Scholar 

  • Hua, Z., Li, J., Zhou, Z., Zheng, S., Zhang, Y., & Fang, J. (2022). Exploring pathways and mechanisms for dichloroacetonitrile formation from typical amino compounds during UV/chlorine treatment. Environmental Science and Technology, 56(13), 9712–9721.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang, T., Deng, L., Wang, T., Liao, X., Hu, J., Tan, C., & Singh, R. P. (2022). Effects of bromide ion on the formation and toxicity alteration of halonitromethanes from nitrate containing humic acid water during UV/chlor(am)ine disinfection. Water Research, 225, 119175.

    Article  CAS  PubMed  Google Scholar 

  • Ike, I. A., Lee, Y., & Hur, J. (2019). Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon post-chlor(am)ination: A critical review. Chemical Engineering Journal, 375, 121929.

    Article  CAS  Google Scholar 

  • Isaac, R. A., & Morris, J. C. (1983). Transfer of active chlorine from chloramine to nitrogenous organic compounds. 1. Kinetics. Environmental Science & Technology, 17(12), 738–742.

    Article  CAS  ADS  Google Scholar 

  • Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D., & Thruston, A. D. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science and Technology, 40(23), 7175–7185.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kundu, B., Richardson, S. D., Swartz, P. D., Matthews, P. P., Richard, A. M., & DeMarini, D. M. (2004). Mutagenicity in salmonella of halonitromethanes: A recently recognized class of disinfection by-products in drinking water. Mutation Research/genetic Toxicology and Environmental Mutagenesis, 562(1–2), 39–65.

    Article  CAS  Google Scholar 

  • Li, T., Jiang, Y., An, X., Liu, H., Hu, C., & Qu, J. (2016). Transformation of humic acid and halogenated byproduct formation in UV–chlorine processes. Water Research, 102, 421–427.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Xu, B., Zhang, T., Hu, C., Tang, Y., Dong, Z., Cao, T., & El-Din, M. G. (2021). Formation of disinfection by-products in a UV-activated mixed chlorine/chloramine system. Journal of Hazardous Materials, 407, 124373.

    Article  CAS  PubMed  Google Scholar 

  • Magazinovic, R. S., Nicholson, B. C., Mulcahy, D. E., & Davey, D. E. (2004). Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. Chemosphere, 57(4), 329–335.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Marsà, A., Cortés, C., Teixidó, E., Hernández, A., & Marcos, R. (2017). In vitro studies on the tumorigenic potential of the halonitromethanes trichloronitromethane and bromonitromethane. Toxicology in Vitro, 45, 72–80.

    Article  PubMed  Google Scholar 

  • Plewa, M. J., Kargalioglu, Y., Vankerk, D., Minear, R. A., & Wagner, E. D. (2002). Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environmental and Molecular Mutagenesis, 40(2), 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. H., & McKague, A. B. (2004). Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environmental Science and Technology, 38(1), 62–68.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Qin, W., Liu, Z., Lin, Z., Wang, Y., Dong, H., Yuan, X., Qiang, Z., & Xia, D. (2022). Unraveling the multiple roles of VUV mediated hydroxyl radical in VUV/UV/chlorine process: Kinetic simulation, mechanistic consideration and byproducts formation. Chemical Engineering Journal, 446, 137066.

    Article  CAS  Google Scholar 

  • Shan, J., Hu, J., Sule Kaplan-Bekaroglu, S., Song, H., & Karanfil, T. (2012). The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars. Chemosphere, 86(4), 323–328.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Song, Z., Yang, L., Lu, Y., Wang, C., Liang, J., Du, Y., Li, X., Hu, Q., Guan, Y., & Wu, Q. (2021). Characterization of the transformation of natural organic matter and disinfection byproducts after chlorination, ultraviolet irradiation and ultraviolet irradiation/chlorination treatment. Chemical Engineering Journal, 426, 131916.

    Article  CAS  Google Scholar 

  • Wang, L., Ye, C., Guo, L., Chen, C., Kong, X., Chen, Y., Shu, L., Wang, P., Yu, X., & Fang, J. (2021). Assessment of the UV/Chlorine Process in the disinfection of pseudomonas aeruginosa: Efficiency and mechanism. Environmental Science and Technology, 55(13), 9221–9230.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang, T., Deng, L., Dai, W., Hu, J., Singh, R. P., & Tan, C. (2022). Formation of brominated halonitromethanes from threonine involving bromide ion during the UV/chlorine disinfection. Journal of Cleaner Production, 373, 133897.

    Article  CAS  Google Scholar 

  • Wang, Z., An, N., Shao, Y., Gao, N., Du, E., & Xu, B. (2020). Experimental and simulation investigations of UV/persulfate treatment in presence of bromide: Effects on degradation kinetics, formation of brominated disinfection byproducts and bromate. Separation and Purification Technology, 242, 116767.

    Article  CAS  Google Scholar 

  • Wu, Q., Zhou, Y., Li, W., Zhang, X., Du, Y., & Hu, H. (2019). Underestimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase. Water Research, 162, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, H., Shao, Y., Gao, N., Lu, X., Chu, W., An, N., Tan, C., Zheng, X., & Gao, Y. (2019). The influence of bromide on the degradation of sulfonamides in UV/free chlorine treatment: Degradation mechanism, DBPs formation and toxicity assessment. Chemical Engineering Journal, 362, 692–701.

    Article  CAS  Google Scholar 

  • Xu, B., Deng, L., Zhang, S., Luo, W., Hu, J., Tan, C., & Singh, R. P. (2023). Analysis of degradation kinetic modeling and mechanism of chlorinated-halonitromethanes under UV/monochloramine treatment. Environmental Pollution, 319, 120972.

    Article  CAS  PubMed  Google Scholar 

  • Yeom, Y., Han, J., Zhang, X., Shang, C., Zhang, T., Li, X., Duan, X., & Dionysiou, D. D. (2021). A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants. Chemical Engineering Journal, 424, 130053.

    Article  CAS  Google Scholar 

  • Zhang, Y., Lu, J., Yi, P., Zhang, Y., & Wang, Q. (2019). Trichloronitromethane formation from amino acids by preozonation-chlorination: The effects of ozone dosage, reaction time, pH, and nitrite. Separation and Purification Technology, 209, 145–151.

    Article  CAS  Google Scholar 

  • Zhou, Y., Ye, Z., Huang, H., Liu, Y. D., & Zhong, R. (2021). Formation mechanism of chloropicrin from amines and free amino acids during chlorination: A combined computational and experimental study. Journal of Hazardous Materials, 416, 125819.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Wang, C., Andrews, S., & Hofmann, R. (2022). Effect of UV/chlorine oxidation on disinfection byproduct formation from diverse model compounds. ACS ES&T Water, 2(4), 573–582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 22076023 and 21677032) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_0284). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Funding

This work was supported by National Natural Science Foundation of China (Nos. 22076023 and 21677032) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_0284). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

TW: conceptualization, software, visualization, writing—original draft, data curation, formal analysis. LD: methodology, validation, resources, supervision, funding acquisition, project administration, writing—review & editing. WD: conceptualization, investigation, resources. CT: conceptualization, writing—review & editing. JH: conceptualization, writing—review & editing. RPS: supervision, writing—review & editing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lin Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors approve the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1216 KB)

Appendix A. Supplementary data

Appendix A. Supplementary data

Supplementary data to this article can be found in the supplementary files.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Deng, L., Dai, W. et al. Bromide induced the formation of brominated halonitromethanes from aspartic acid in the UV/chlorine disinfection process. Environ Geochem Health 46, 54 (2024). https://doi.org/10.1007/s10653-024-01854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01854-2

Keywords

Navigation