Skip to main content

Advertisement

Log in

Levels, spatial distributions, and provision of petroleum hydrocarbons and phthalates in sediments from Obhur lagoon, Red Sea coast of Saudi Arabia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The levels, spatial distribution, and sources of petroleum hydrocarbons and phthalates were assessed in surface sediment samples from the urban lagoon of Obhur near Jeddah, the largest city on the Red Sea coast of Saudi Arabia. The lagoon was divided into the inner zone, middle zone, and outer zone based on its geomorphological features and developmental activities. n-Alkanes, hopane and sterane biomarkers, and unresolved complex mixture were the major petroleum hydrocarbon compounds of the total extractable organic matter. Phthalates were also measured in the sediment samples. In the three zones, n-alkanes ranged from 89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane and sterane biomarkers varied from 69.4 ± 75.3 to 77.7 ± 69.9 ng/g and 72.5 ± 77.9–89.5 ± 82.2 ng/g, respectively. The UCM concentrations ranged from 821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these anthropogenic hydrocarbons in the lagoon sediments were petroleum products (boat engine discharges, boat washing, lubricants, and wastewater flows) and plasticizers (plastic waste and litter). The proportions of anthropogenic hydrocarbons derived from petroleum products in the sediment’s TEOM ranged from 43 ± 33 to 62 ± 15%, while the percentages for plasticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The presence and inputs of these contaminants from petroleum and plastic wastes in the lagoon’s sediments will eventually have an impact on its habitats, including the benthic nursery and spawning areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abas, M. R. B., & Simoneit, B. R. T. (1996). Composition of extractable organic matter of air particles from Malaysia: Initial studies. Atmospheric Environment, 15, 2779–2793.

    Article  Google Scholar 

  • Abdallah, R. I., Khalil, N. M., & Roushdie, M. I. (2015). Monitoring of pollution in Egyptian Red Sea. Egypt J Petroleum, 24(1), 59–70.

    Article  Google Scholar 

  • Abdulla, C. P., & Al-Subhi, A. M. (2020). Sea level variability in the Red Sea: A persistent east-west pattern. Remote Sensing, 12(13), 2090.

    Article  Google Scholar 

  • Aboul-Kassim, T. A. T., & Simoneit, B. R. T. (1996). Lipid geochemistry of surficial sediments from coastal environment of Egypt I. Aliphatic hydrocarbons - characterization and sources. Marine Chemistry, 54, 135–158.

    Article  CAS  Google Scholar 

  • Alamri, D. A., Al-Solaimani, S. G., Abohassan, R. A., Rinklebe, J., & Shaheen, S. M. (2021). Assessment of water contamination by potentially toxic elements in mangrove lagoons of the Red Sea. Saudi Arabia. Environmental Geochemistry and Health, 43(11), 4819–4830.

    Article  CAS  Google Scholar 

  • Albaiges, J., & Cuberes, M. R. (1980). On the degradation of petroleum residues in the marine environment. Chemosphere, 9, 539–545.

    Article  CAS  Google Scholar 

  • Albarakati, A., Ahmad, F. (2019). Red Sea Coastal Lagoons: Their dynamics and future challenges. In: Oceanographic and Biological Aspects of the Red Sea, (pp. 123–131). Springer, Cham

  • Albarakati, A. (2009). Water exchange of Sharm Obhur, Jeddah. Red Sea. JKAU: Marine Scienes, 20, 49–58.

    Google Scholar 

  • Alhudhodi, A. H., Alduwais, A. K., Aldhafeeri, Z. M., Al-Shamsi, M. A. S., & Alharbi, B. H. (2022). Contamination assessment of mangrove ecosystems in the Red Sea coast by polycyclic aromatic hydrocarbons. International Journal of Environmental Research and Public Health, 19(9), 5474.

    Article  Google Scholar 

  • Ali, A. M., Rønning, H. T., Al Arif, W. M., Kallenborn, R., & Al-Lihaibi, S. S. (2017). Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere, 175, 505–513.

    Article  CAS  Google Scholar 

  • Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon, Red Sea. Forests, 12(1), 52.

    Article  Google Scholar 

  • Al-Khion, D. D., Al-Ali, B. S., Al-Saad, H. T., & Rushdi, A. I. (2021). Levels and source of aliphatic hydrocarbons in marine fishes from coast of Iraq based on biomarkers and biogeochemical indices. Indian Journal of Ecology, 48(2), 536–544.

    Google Scholar 

  • Al-Lihaibi, S., Al-Mehmadi, A., Alarif, W. M., Bawakid, N. O., Kallenborn, R., & Ali, A. M. (2019). Microplastics in sediments and fish from the Red Sea coast at Jeddah (Saudi Arabia). Environmental Chemistry, 16(8), 641–650.

    Article  CAS  Google Scholar 

  • Alsaafani, M. A., Alraddadi, T. M., & Albarakati, A. M. (2017). Seasonal variability of hydrographic structure in Sharm Obhur and water exchange with the Red Sea. Arabian Journal Geoscience, 10(14), 315.

    Article  Google Scholar 

  • Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin. Egypt Bulletin Am Assoc Petrol Geol, 87(1), 143–180.

    Google Scholar 

  • Ameen, F., Moslem, M., Hadi, S., & Al-Sabri, A. E. (2016). Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi Journal Biological Sciences, 23(2), 211–218.

    Article  CAS  Google Scholar 

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605.

    Article  CAS  Google Scholar 

  • Arfaeinia, H., Fazlzadeh, M., Taghizadeh, F., Saeedi, R., Spitz, J., & Dobaradaran, S. (2019). Phthalate acid esters (PAEs) accumulation in coastal sediments from regions with different land use configuration along the Persian Gulf. Ecotoxicology and Environmental Safety, 169, 496–506.

    Article  CAS  Google Scholar 

  • Badr, N. B., El-Fiky, A. A., Mostafa, A. R., & Al-Mur, B. A. (2009). Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ Monitoring Assessment, 155(1), 509–526.

    Article  CAS  Google Scholar 

  • Barboza, L.G.A., C ́ozar, A., Gimenez, B.C.G., Barros, T.L., Kershaw, P.J., Guilhermino, L. (2019). Macroplastics pollution in the marine environment. In: World Seas: An Environmental Evaluation. Elsevier, pp. 305–328. https://doi.org/10.1016/B978-0-12-805052-1.00019-X

  • Basaham, A. S., El-Sayed, M. A. (2006). Sharm Obhur: environmental consequences of 20 years of uncontrolled coastal urbanization. Marine Scienes, 17(1)

  • Basaham, A. S., & El-Shater, A. (1994). Textural and mineralogical characteristics of the surficial sediments of Sharm Obhur, Red Sea coast of Saudi Arabia. Marine Scienes, 5(1), 51–71.

    Google Scholar 

  • Basaham, A. S., Ghandour, I. M., & Haredy, R. (2019). Controlling factors on the geochemistry of Al-Shuaiba and Al-Mejarma coastal lagoons, Red Sea Saudi Arabia. Open Geosciences, 11(1), 426–439.

    Article  Google Scholar 

  • Batang, Z. B., Alikunhi, N., Gochfeld, M., Burger, J., Al-Jahdali, R., Al-Jahdali, H., Aziz, M. A., Al-Jebreen, D., & Al-Suwailem, A. (2016). Congener-specific levels and patterns of polychlorinated biphenyls in edible fish tissue from the central Red Sea coast of Saudi Arabia. Sci Total Environment, 572, 915–925.

    Article  CAS  Google Scholar 

  • Bellar, H., Barrick, R. C., Becker, S. (1986). Development of sediment quality values for Puget Sound. Prepared by Tetra Tech, Inc. for Resource Planning Associates/U.S. Army Corps of Engineers. Seattle District for the Puget Sound Dredged Disposal Analysis Program. Tetra Tech Inc. Bellevue, Washington

  • Bellou, N., Gambardella, C., Karantzalos, K., Monteiro, J. G., Canning-Clode, J., Kemna, S., Arrieta-Giron, C. A., & Lemmen, C. (2021). Global assessment of innovative solutions to tackle marine litter. Nature Sustainability, 4, 516–524. https://doi.org/10.1038/s41893-021-00726-2

    Article  Google Scholar 

  • Boonyatumanond, R., Wattayakorn, G., Togo, A., & Takada, H. (2006). Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Marine Pollution Bulletin, 52(8), 942–956.

    Article  CAS  Google Scholar 

  • Bouloubassi, I., Fillaux, J., & Saliot, A. (2001). Hydrocarbons in surface sediments from the Changjiang (Yangtze River) Estuary, East China Sea. Marine Pollution Bulletin, 42, 1335–1346.

    Article  CAS  Google Scholar 

  • Bourbonniere, R. A., & Meyers, P. A. (1996). Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41(2), 352–359.

    Article  Google Scholar 

  • Bray, E. E., & Evans, E. D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica Et Cosmochimica Acta, 22(1), 2–15.

    Article  CAS  Google Scholar 

  • Bryan, G. T. (1976). Heavy metal contamination in the sea. Marine Pollution, 3, 185–302.

    Google Scholar 

  • Cesar, A., Lia, L. R. B., Pereira, C. D. S., Santos, A. R., Cortez, F. S., Choueri, R. B., & Rachid, B. R. F. (2014). Environmental assessment of dredged sediment in the major Latin American seaport (Santos, São Paulo—Brazil): An integrated approach. Science of the Total Environment, 497, 679–687.

    Article  Google Scholar 

  • Colombo, J. C., Pelletier, E., Brochu, C., Khalil, M., & Catoggio, J. A. (1989). Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de la Plata estuary Argentina. Environmental Science & Technology, 23(7), 888–894.

    Article  CAS  Google Scholar 

  • Commendatore, M. G., & Esteves, J. L. (2004). Natural and anthropogenic hydrocarbons in sediments from the Chubut river (Patagonia, Argentina). Marine Pollution Bulletin, 48, 910–918.

    Article  CAS  Google Scholar 

  • Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44(9), 842–852.

    Article  CAS  Google Scholar 

  • Dicks, B. (1987). Pollution. In A. Edwards & S. M. Head (Eds.), Key Environments: The Red Sea (pp. 383–404). Pergamon Press.

    Google Scholar 

  • Diefendorf, A. F., Freeman, K. H., & Wing, S. L. (2014). A comparison of terpenoid and leaf fossil vegetation proxies in Paleocene and Eocene Bighorn Basin sediments. Organic Geochemistry, 71, 30–42.

    Article  CAS  Google Scholar 

  • Diem, A., Tesfaldet, Y. T., Hocherman, T., Hoon, V., & Zijlemans, K. (2023). Marine litter in the Red Sea: Status and policy implications. Marine Pollution Bulletin, 187, 114495.

    Article  CAS  Google Scholar 

  • Dong, C. D., Huang, C. P., Nguyen, T. B., Hsiung, C. F., Wu, C. H., Lin, Y. L., & Hung, C. M. (2019). The degradation of phthalate esters in marine sediments by persulfate over iron–cerium oxide catalyst. Science of the Total Environment, 696, 133973.

    Article  CAS  Google Scholar 

  • DouAbul, A. A., Heba, H. M., & Fareed, K. H. (1997). Polynuclear aromatic hydrocarbons (PAHs) in fish from the Red Sea Coast of Yemen. Asia-Pacific Conference on Science and Management of Coastal Environment (pp. 251–262). Springer.

    Chapter  Google Scholar 

  • Durmuş, K. A. Y. A. (2019). Sustainable domestic solid waste management in Jeddah, Saudi Arabia. Journal of International Environmental Application and Science, 14(4), 193–198.

    Google Scholar 

  • Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82.

    Article  CAS  Google Scholar 

  • Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156, 1322–1335.

    Article  CAS  Google Scholar 

  • El Nemr, A., El-Sadaawy, M. M., Khaled, A., & El-Sikaily, A. (2014). Distribution patterns and risks posed of polycyclic aromatic hydrocarbons contaminated in the surface sediment of the Red Sea coast (Egypt). Desalination and Water Treatment, 52(40–42), 7964–7982.

    Article  Google Scholar 

  • El Nemr, A., El-Sikaily, A., Khaled, A., Said, T. O., & Abd-Alla, A. M. (2004). Determination of hydrocarbons in mussels from the Egyptian Red Sea coast. Environmental Monitoring Assessment, 96(1–3), 251–261.

    Article  Google Scholar 

  • El Sayed, M. A. (2002a). Distribution and behavior of dissolved species of nitrogen and phosphorus in two coastal Red Sea lagoons receiving domestic sewage. Marine Sciences, 13, 47–73.

    Google Scholar 

  • El Sayed, M. A. (2002b). Nitrogen and phosphorus in the effluent of a sewage treatment station on the eastern Red Sea coast: Daily cycle, flux and impact on the coastal area. International Journal Environmental Studies, 59(1), 73–94.

    Article  Google Scholar 

  • El-Rayis, O. A., & Eid, F. M. (1997). Hydrography and water budget of Obhur creek, Red Sea. Marine Scienes, 8, 29–45.

    Google Scholar 

  • El-Sikaily, A., Khaled, A., El Nemr, A., Said, T. O., & Abd-Alla, A. M. A. (2003). Polycyclic aromatic hydrocarbons and aliphatics in the coral reef skeleton of the Egyptian Red Sea Coast. Bulletin Environment Contamination Toxicology, 71(6), 1252–1259.

    Article  CAS  Google Scholar 

  • Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., & Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 77(1–2), 177–182.

    Article  CAS  Google Scholar 

  • Fan, S., Yan, Z., Qiao, L., Gui, F., Li, T., Yang, Q., & Ren, C. (2023). Biological effects on the migration and transformation of microplastics in the marine environment. Marine Environmental Research, 185, 105875.

    Article  CAS  Google Scholar 

  • Ficken, K. J., Li, B., Swain, D. E., & Eglinton, G. (2000). An n-alkanes proxy for the sedimentary input of submerged/floating fresh water aquatic macrophytes. Organic Geochemistry, 31, 745–759.

    Article  CAS  Google Scholar 

  • Frysinger, G. S., Gaines, R. B., Xu, L., & Reddy, C. M. (2003). Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environmental Sci Technol, 37(8), 1653–1662.

    Article  CAS  Google Scholar 

  • Gao, L., Wang, Z., Peng, X., Su, Y., Fu, P., Ge, C., & Peng, L. (2022). Occurrence and spatial distribution of microplastics, and their correlation with petroleum in coastal waters of Hainan Island China. Environmental Pollution, 294, 118636.

    Article  CAS  Google Scholar 

  • Gao, Y., Han, Y., Xia, J., Tan, J., Wang, Y. P., & Wang, S. (2021). Composition and distribution of aliphatic hydrocarbon compounds and biomarkers in seafloor sediments from offshore of the Leizhou Peninsula (South China). ACS Omega, 6(50), 34286–34293.

    Article  CAS  Google Scholar 

  • Garcia, M. R., Cattani, A. P., da Cunha Lana, P., Figueira, R. C. L., & Martins, C. C. (2019). Petroleum biomarkers as tracers of low-level chronic oil contamination of coastal environments: A systematic approach in a subtropical mangrove. Environmental Pollution, 249, 1060–1070.

    Article  CAS  Google Scholar 

  • Gough, M. A., & Rowland, S. J. (1990). Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 344, 648–650.

    Article  CAS  Google Scholar 

  • Harji, R. R., Yvenat, A., & Bhosle, N. B. (2008). Sources of hydrocarbons in sediments of the Mandovi estuary and the Marmugoa harbour, west coast of India. Environment International, 34(7), 959–965.

    Article  Google Scholar 

  • Hees, W. (1977). Sewage discharges from ships transiting coastal salt waters. J Am Water Resources Assoc, 13(2), 215–230.

    Article  Google Scholar 

  • Isobe, A., & Iwasaki, S. (2022). The fate of missing ocean plastics: Are they just a marine environmental problem? Science of the Total Environment, 825, 153935.

    Article  CAS  Google Scholar 

  • Jafarabadi, A. R., Dashtbozorg, M., Bakhtiari, A. R., Maisano, M., & Cappello, T. (2019). Geochemical imprints of occurrence, vertical distribution and sources of aliphatic hydrocarbons, aliphatic ketones, hopanes and steranes in sediment cores from ten Iranian Coral Islands, Persian Gulf. Marine Pollution Bulletin, 144, 287–298.

    Article  CAS  Google Scholar 

  • Jamoussi, B., Chakroun, R., & Al-Mur, B. (2022). Assessment of total petroleum hydrocarbon contamination of the red sea with endemic fish from Jeddah (Saudi Arabia) as bioindicator of Aquatic environmental pollution. Water, 14(11), 1706.

    Article  CAS  Google Scholar 

  • Jang, M., Shim, W. J., Han, G. M., Cho, Y., & Hong, S. H. (2023). Plastic debris as a mobile source of additive chemicals in marine environments: In-situ evidence. Science of the Total Environment, 856, 158893.

    Article  CAS  Google Scholar 

  • Keshavarzifard, M., Zakaria, M. P., Sharifinia, M., Grathwohl, P., Keshavarzifard, S., Sharifi, R., & Mehr, M. R. (2022). Determination of hydrocarbon sources in major rivers and estuaries of peninsular Malaysia using aliphatic hydrocarbons and hopanes as biomarkers. Environmental Forensics, 23(3–4), 255–268.

    Article  CAS  Google Scholar 

  • Killops, S. D., & Al-Juboori, M. A. H. A. (1990). Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic Geochem, 15(2), 147–160.

    Article  CAS  Google Scholar 

  • Kingsley, O., & Witthayawirasak, B. (2020). Deterministic assessment of the risk of phthalate esters in sediments of U-Tapao Canal Southern Thailand. Toxics, 8(4), 93.

    Article  CAS  Google Scholar 

  • Kjerfve, B. (1994). Coastal lagoons. In: Elsevier oceanography series (Vol. 60, pp. 1–8). Elsevier

  • Knoppers, B., Kjerfve, B., & Carmouze, J. P. (1991). Trophic state and water turn-over time in six choked coastal lagoons in Brazil. Biogeochemistry, 14(2), 149–166.

    Article  CAS  Google Scholar 

  • Kostianaia, E. A., Kostianoy, A., Lavrova, O. Y., Soloviev, D. M. (2020). Oil pollution in the Northern Red Sea: A threat to the marine environment and tourism development. In: Environmental Remote Sensing in Egypt (pp. 329–362). Springer, Cham

  • Kvenvolden, K. A., Rapp, J. B., & Hostettler, F. D. (1990). Hydrocarbon geochemistry of hydrothermal generated petroleum from Escanaba Trough, offshore California, U.S.A. Applied Geochemistry, 5, 83–91.

    Article  Google Scholar 

  • Laws, E. A. (1993). Oil Pollution. Aquatic Pollution: An Introductory Text (2nd ed., pp. 417–458). Wiley.

    Google Scholar 

  • Long, E. R., & Morgan, L. G. (1990). The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52 (p. 175). National Oceanic and Atmospheric Administration Seattle.

    Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • Loya, Y. (1975). Possible effects of water pollution on the community structure of Red Sea corals. Marine Biology, 29, 177–185.

    Article  Google Scholar 

  • Malins, D. C. (1977). Metabolism of aromatic hydrocarbons in marine organisms. Annals New York Acad Sci, 298(1), 482–496.

    Article  CAS  Google Scholar 

  • Mandura, A. S. (1997). A mangrove stand under sewage pollution stress: Red Sea. Mangroves Salt Marshes, 1(4), 255–262.

    Article  Google Scholar 

  • Mazurek, M. A., & Simoneit, B. R. T. (1984). Characterization of biogenic and petroleum derived organic matter in aerosols over remote, rural and urban areas. In L. H. Kieth (Ed.), Identification and Analysis of Organic Pollutants in Air (pp. 353–370). Ann Arbor Science/Butterworth Publishers.

    Google Scholar 

  • Medeiros, P. M., Bicego, M. C., Castelao, R. M., Rosso, D. C., Fillmann, G., & Zamboni, A. T. (2005). Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon estuary, Brazil. Environment International, 31, 77–87.

    Article  CAS  Google Scholar 

  • Moldowan, J. M., Seifert, W. K., & Gallegos, E. J. (1985). Relationship between petroleum composition and depositional environment of petroleum source rocks. Bulletin - American Association of Petroleum Geologists, 69(8), 1255–1268.

    CAS  Google Scholar 

  • Ndungu, K., Beylich, B. A., Staalstrøm, A., Øxnevad, S., Berge, J. A., Braaten, H. F. V., & Bergstrøm, R. (2017). Petroleum oil and mercury pollution from shipwrecks in Norwegian coastal waters. Science of the Total Environment, 593, 624–633.

    Article  Google Scholar 

  • Neves, P. A., Costa, P. G., Portz, L. C., Garcia, M. R., & Fillmann, G. (2023). Levels and sources of hydrocarbons in the Patos Lagoon estuary and Cassino Beach mud bank (South Atlantic, Brazil): Evidence of transference between environments. Environmental Monitoring and Assessment, 195(4), 484.

    Article  CAS  Google Scholar 

  • Nilsen, O. G., Haugen, O. A., Zahlsen, K., Halgunset, J., Helseth, A., Aarset, H., & Eide, I. (1988). Toxicity of n-C9 to n-C13 alkanes in the rat on short term inhalation. Pharmacology & Toxicology, 62(5), 259–266.

    Article  CAS  Google Scholar 

  • Peng, L., Fu, D., Qi, H., Lan, C. Q., Yu, H., & Ge, C. (2020). Micro-and nano-plastics in marine environment: Source, distribution and threats—A review. Science of the Total Environment, 698, 134254.

    Article  CAS  Google Scholar 

  • Periáñez, R. (2020). A Lagrangian oil spill transport model for the Red Sea. Ocean Engineering, 217, 107953.

    Article  Google Scholar 

  • Perkins, S. (2015). Nearly every seabird may be eating plastic by 2050. Retrieved from: http://www.sciencemag.org/news/2015/08/nearly-every-seabird-may-be-eating-plastic-2050

  • Peters, K. E., & Moldowan, J. M. (1993). The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall.

    Google Scholar 

  • Por, F. D. (2012). Lessepsian migration: The influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Springer.

    Google Scholar 

  • PTI (PTI Environmental Services; Barrick R, Becker S, Brown L, Beller H, Pastorok R). (1988). Sediment quality values refinement: 1988 update and evaluation of Puget Sound AET. Volume 1. PTI Environmental Services. Bellevue, Washington. Pp. 173

  • Ramirez, M. M. B., Caamal, R. D., & von Osten, J. R. (2019). Occurrence and seasonal distribution of microplastics and phthalates in sediments from the urban channel of the Ria and coast of Campeche, Mexico. Science of the Total Environment, 672, 97–105.

    Article  Google Scholar 

  • Rasul, N. M. A. (2015). Lagoon sediments of the Eastern Red Sea: Distribution processes, pathways and patterns. In N. M. A. Rasul & I. C. F. Stewart (Eds.), The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin (pp. 281–316). Springer.

    Chapter  Google Scholar 

  • Rinkevich, B., & Loya, Y. (1979). Laboratory experiments on the effects of crude oil on the Red Sea coral Stylophora pistillate. Marine Pollution Bulletin, 10, 328–330.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., Abubakr. M. M., Hebba, H. (1994). Marine habitats of Alurj-Alsalif and Dubab-Yakhtul areas: Ecology, environment and management. Final Report, Department of Oceanography, Sana'a University, pp. 117

  • Rushdi, A. I., Simoneit, B. R., Lijotra, L., Bazeyad, A. Y., Dumenden, R., El-Mubarak, A. H., & Al-Mutlaq, K. F. (2022b). Phthalates, non-phthalates, polychlorinated biphenyls, and phenyl phosphates in atmospheric suspended particulate matter of Dhahran City, Saudi Arabia: levels and seasonal variation. International Journal of Environmental Science and Technology, 20(4), 1–16.

    Google Scholar 

  • Rushdi, A. I., Al-Mutlaq, K. F., Simoneit, B. R. T., Al-Azri, A., DouAbul, A. A. Z., Al-Zarban, S., & Al-Yamani, F. (2010). Characteristics of lipid tracers to the Arabian Gulf by run-off from rivers and atmospheric dust transport. Arabian Journal of Geosciences, 3, 113–131.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., Al-Shaikh, I., El-Mubarak, A. H., Alnaimi, H. A., Al-Shamary, N., Hassan, H. M., & Abou Assali, M. (2017b). Characteristics and sources of anthropogenic and biogenic hydrocarbons in sediments from the coast of Qatar. Marine Pollution Bulletin, 124(1), 56–66.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., Al-Shaikh, I., El-Mubarak, A. H., Alnaimi, H. A., Al-Shamary, N., Hassan, H. M., & Assali, M. A. (2017a). Characteristics and sources of anthropogenic and biogenic hydrocarbons in sediments from the coast of Qatar. Marine Pollut Bull, 124(1), 56–66.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., DouAboul, A. A., Mohammed, S. S., & Simoneit, B. R. T. (2006). Distribution and sources of extractable organic matter in the Mesopotamian wetland marsh sediments of Iraq: I - aliphatic lipids. Environmental Geology, 50, 857–866.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., DouAbul, A. A., Al-Maarofi, S. S., & Simoneit, B. R. (2018). Impacts of Mesopotamian wetland re-flooding on the lipid biomarker distributions in sediments. Journal of Hydrology, 558, 20–28.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., DouAbul, A. A., Simoneit, B. R., El-Mubarak, A. H., Al-Mutlaq, K. F., Qurban, M. A., & Goni, M. A. (2014b). Nonpolar lipid tracers in sediments from the Shatt al-Arab River of Iraq and the northwestern Arabian Gulf. Arabian Journal of Geosciences, 7, 5495–5508.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., El-Mubarak, A. H., Simoneit, B. R., Goni, M. A., Qurban, M. A., Bazeyad, A. Y., & Al-Mutlaq, K. F. (2022a). Natural and anthropogenic sources of extractable organic matter in sediments from the coastal zone of the Arabian Gulf in Saudi Arabia. Arabian Journal of Geosciences, 15(17), 1–17.

    Article  Google Scholar 

  • Rushdi, A. I., Kassim, T. A. T. A., & Simoneit, B. R. T. (2009). Sources of organic tracers in sediments from the coastal zone of Ras Abu el-Darag, Gulf of Suez. Environmental Geology, 58, 1675–1687.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., & Simoneit, B. R. T. (2002a). Hydrothermal alteration of organic matter in sediments of the northeastern Pacific Ocean: Part 1. Middle Valley. Juan De Fuca Ridge. Appl Geochem, 17, 1401–1428.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., & Simoneit, B. R. T. (2002b). Hydrothermal alteration of organic matter in sediments of the northeastern Pacific Ocean: Part 2. Gorda Ridge. Escanaba Trough. Appl Geochem, 17, 1467–1494.

    Article  CAS  Google Scholar 

  • Rushdi, A. I., Simoneit, B. R. T., DouAbul, A. A. Z., Al-Mutlaq, K. F., El-Mubarak, A. H., Qurban, M., & Goni, M. A. (2014a). Occurrence, distribution and sources of polar lipid tracers in sediments from the Shatt al-Arab River, Iraq – Polar compounds. Sci Tot Environ, 470–471, 180–192.

    Article  Google Scholar 

  • Ryan, P.G., (2015). A brief history of marine litter research. In: Marine Anthropogenic Litter. Springer, pp. 1–25. https://doi.org/10.1007/978-3-319-16510-3_1

  • Salem, D. M. A., Morsy, F. A. E. M., El Nemr, A., El-Sikaily, A., & Khaled, A. (2014). The monitoring and risk assessment of aliphatic and aromatic hydrocarbons in sediments of the Red Sea. Egypt. Egypt Journal Aquatic Research, 40(4), 333–348.

    Article  Google Scholar 

  • Shetaia, Y. M., Mohamed, T. M., Farahat, L. A., & ElMekawy, A. (2016). Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted Red Sea area. Marine Pollution Bull, 111(1), 435–442.

    Article  CAS  Google Scholar 

  • Shirneshan, G., Bakhtiari, A. R., & Memariani, M. (2016). Distribution and origins of n-alkanes, hopanes, and steranes in rivers and marine sediments from Southwest Caspian coast, Iran: Implications for identifying petroleum hydrocarbon inputs. Environmental Science and Pollution Research, 23, 17484–17495.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1977a). Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica Et Cosmochimica Acta, 41, 463–476.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1977b). Organic matter in eolian dusts over the Atlantic Ocean. Marine Chemistry, 5, 443–464.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1978). The organic chemistry of marine sediments. In J. P. Riley & R. Chester (Eds.), Chemical Oceanography (2nd ed., pp. 233–311). Academic Press.

    Google Scholar 

  • Simoneit, B. R. T. (1984). Organic matter of the troposphere - III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States. Atmospheric Environment, 18, 51–67.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1985). Application of molecular marker analysis to vehicular exhaust for source reconciliation. Int J Environ Analyt Chem, 22, 203–233.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1989). Organic matter of troposphere – V: Application of molecular analysis to biogenic emissions into troposphere for source reconciliations. Journal of Atmospheric Chemistry, 8, 251–275.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., Crisp, P. T., Mazurek, M. A., & Standley, L. J. (1991a). Composition of extractable organic matter of aerosols from the Blue Mountains and southeast coast of Australia. Environment International, 17, 405–419.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., & Mazurek, M. A. (1982). Organic matter of the troposphere - II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment, 16, 2139–2159.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., Sheng, G., Chen, X., Fu, J., Zhang, J., & Xu, Y. (1991b). Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmospheric Environment, 25A, 2111–2129.

    Article  CAS  Google Scholar 

  • Sivadas, S. K., Mishra, P., Kaviarasan, T., Sambandam, M., Dhineka, K., Murthy, M. R., & Hoehn, D. (2022). Litter and plastic monitoring in the Indian marine environment: A review of current research, policies, waste management, and a roadmap for multidisciplinary action. Marine Pollution Bulletin, 176, 113424.

    Article  CAS  Google Scholar 

  • Squillante, J., Scivicco, M., Ariano, A., Nolasco, A., Esposito, F., Cacciola, N. A., & Cirillo, T. (2023). Occurrence of phthalate esters and preliminary data on microplastics in fish from the Tyrrhenian sea (Italy) and impact on human health. Environmental Pollution, 316, 120664.

    Article  CAS  Google Scholar 

  • Surhoff, T. J., & Scholz-Bottcher, B. M. (2016). Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - a lab experiment. Marine Pollution Bulletin, 102(1), 84–94.

    Article  Google Scholar 

  • Ten Haven, H. L., De Leeuw, J. W., Damsté, J. S., Schenck, P. A., Palmer, S. E., & Zumberge, J. E. (1988). Application of biological markers in the recognition of palaeohypersaline environments. Special Publication of the Geological Society of London, 40(1), 123–130.

    Article  Google Scholar 

  • Tolosa, I., De Mora, S. J., Fowler, S. W., Villeneuve, J. P., Bartocci, J., & Cattini, C. (2005). Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Marine Pollution Bulletin, 50(12), 1619–1633.

    Article  CAS  Google Scholar 

  • Tolosa, I., de Mora, S., Sheikholeslami, M. R., Villeneuve, J. P., Bartocci, J., & Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Pollution Bulletin, 48(1–2), 44–60.

    Article  CAS  Google Scholar 

  • Tranganida, A., Hall, A. J., Armstrong, H. C., Moss, S. E., & Bennett, K. A. (2023). Consequences of in vitro benzyl butyl phthalate exposure for blubber gene expression and insulin-induced Akt activation in juvenile grey seals. Environmental Pollution, 316, 120688.

    Article  CAS  Google Scholar 

  • Tsapakis, M., Dakanali, E., Stephanou, E. G., & Karakassis, I. (2010). PAHs and n-alkanes in Mediterranean coastal marine sediments: Aquaculture as a significant point source. Journal of Environmental Monitoring, 12(4), 958–963.

    Article  CAS  Google Scholar 

  • Uddin, S., Fowler, S. W., Saeed, T., Jupp, B., & Faizuddin, M. (2021). Petroleum hydrocarbon pollution in sediments from the Gulf and Omani waters: Status and review. Marine Pollution Bulletin, 173, 112913.

    Article  CAS  Google Scholar 

  • UNEP. (1985). The management and conservation of renewable marine resources in the Indian Ocean Region in the Red Sea and Gulf of Aden region. UNEP Regional Seas Reports & Studies, No. 64

  • van Wezel, A. P., van Vlaardingen, P., Posthumus, R., Grommentijn, G. H., & Sijm, D. T. H. (2000). Environmental risk limits for two phthalates with special emphasis on endocrine disruptive properties. Ecotox Environment Safe, 46, 305–321.

    Article  Google Scholar 

  • Vegter, A. C., Barletta, M., Beck, C., Borrero, J., Burton, H., Campbell, M. L., Costa, M. F., Eriksen, M., Eriksson, C., Estrades, A., & Gilardi, K. V. (2014). Global research priorities to mitigate plastic pollution impacts on marine wildlife. Endanger Species Res, 25, 225–247.

    Article  Google Scholar 

  • Walker, T. R., Grant, J., & Archambault, M. C. (2006). Accumulation of marine debris on an intertidal beach in an urban park (Halifax Harbour, Nova Scotia). Water Quality Research Journal of Canada, 41, 256–262.

    Article  CAS  Google Scholar 

  • Walker, T. R., Reid, K., Arnould, J. P. Y., & Croxall, J. P. (1997). Marine debris surveys at Bird Island, South Georgia 1990–1995. Marine Pollution Bulletin, 34, 61–65.

    Article  CAS  Google Scholar 

  • Wang, S., Liu, G., Yuan, Z., & Da, C. (2018). n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record. Ecotoxicology and Environmental Safety, 150, 199–206.

    Article  CAS  Google Scholar 

  • Wang, X. C., Sun, S., Ma, H. Q., & Liu, Y. (2006). Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao. China. Marine Pollution Bulletin, 52(2), 129–138.

    Article  CAS  Google Scholar 

  • Wilson, J. J., Al-Sofyani, A. A., & Marimuthu, N. (2017). Current biodiversity and ecological status of scleractinian corals of Sharm Obhur, Jeddah, Saudi Arabian coast of the Red Sea. Marine Biodiversity. https://doi.org/10.1007/s12526-017-0784-2

    Article  Google Scholar 

  • WPR (World Population Review). (2023). https://worldpopulationreview.com/

  • Xanthos, D., & Walker, T. R. (2017). International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review. Marine Pollution Bulletin, 118(1–2), 17–26.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhao, C., & Na, H. (2021). Stability Enhancement of a Plastic Additive (dimethyl Phthalate, dMP) with Environment-Friendly Based on 3d-QSAR Model. Polish Journal of Environmental Studies, 30(4), 3885–3896.

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhao, M., Eglinton, G., Lu, H., & HuangC-Y,. (2006). Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Science Reviews, 25(5–6), 575–594.

    Article  Google Scholar 

  • Ziegler, M., Roik, A., Porter, A., Zubier, K., Mudarris, M. S., Ormond, R., & Voolstra, C. R. (2016). Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Pollution Bulletin, 105(2), 629–640.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Plan for Science, Technology, and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (NPST 13-ENV2233-02-R).

Author information

Authors and Affiliations

Authors

Contributions

HA contributed to conceptualization, methodology, investigation, data curation, writing—original draft, visualization, project administration, and funding acquisition. AR contributed to Methodology, investigation, formal data analysis, and writing—review & editing. NR contributed to Methodology, investigation, data curation, and writing—review & editing. AB contributed to methodology, investigation, and writing—review & editing. KA contributed to investigation and writing—review & editing.

Corresponding author

Correspondence to Hattan A. Alharbi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 89 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, H.A., Rushdi, A.I., Rasul, N. et al. Levels, spatial distributions, and provision of petroleum hydrocarbons and phthalates in sediments from Obhur lagoon, Red Sea coast of Saudi Arabia. Environ Geochem Health 46, 22 (2024). https://doi.org/10.1007/s10653-023-01793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01793-4

Keywords

Navigation