Skip to main content

Advertisement

Log in

Impact of long-term resource conservation techniques on biogeochemical characteristics and biological soil quality indicators in a rice green-gram farming system

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abera, G., Wolde-meskel, E., & Bakken, L. R. (2012). Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biology and Fertility of Soils, 48, 51–66. https://doi.org/10.1007/s00374-011-0607-8

    Article  CAS  Google Scholar 

  • Acosta-martínez, V., Lascano, R., Calderón, F., Booker, J. D., Zobeck, T. M., & Upchurch, D. R. (2011). Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-011-0565-1

    Article  Google Scholar 

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using Fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 943–951. https://doi.org/10.1016/S0038-0717(00)00244-3

    Article  CAS  Google Scholar 

  • An, N., Lee, S., Cho, J., Lee, B., Shin, J., Ok, J., Kim, S. (2014). Effects of long-term fertilization on microbial diversity in upland soils estimated by biolog ecoplate and DGGE. 6315, 451–456.

  • Anderson, T. H. (2003). Microbial eco-physiological indicators to assess soil quality. Agriculture, Ecosystems & Environment, 98, 285–293. https://doi.org/10.1016/S0167-8809(03)00088-4

    Article  Google Scholar 

  • Badiane, N. N. Y., Chotte, J. L., Pate, E., Masse, D., & Rouland, C. (2001). Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology, 18, 229–238. https://doi.org/10.1016/S0929-1393(01)00159-7

    Article  Google Scholar 

  • Balachandar, D., Doud, M. S., Schneper, L., Mills, D., & Mathee, K. (2014). Long-term organic nutrient management fosters the eubacterial community diversity in the indian semi-arid alfisol as revealed by length heterogeneity-PCR. Communications in Soil Science and Plant Analysis, 45, 189–203. https://doi.org/10.1080/00103624.2013.841919

    Article  CAS  Google Scholar 

  • Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Větrovský, T., Žifčáková, L., Šnajdr, J., Rídl, J., Vlček, Č, & Voříšková, J. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME Journal, 6, 248–258. https://doi.org/10.1038/ismej.2011.95

    Article  CAS  Google Scholar 

  • Baudoin, E., Philippot, L., Chèneby, D., Chapuis-Lardy, L., Fromin, N., Bru, D., Rabary, B., & Brauman, A. (2009). Direct seeding mulch-based cropping increases both the activity and the abundance of denitrifier communities in a tropical soil. Soil Biology & Biochemistry, 41, 1703–1709. https://doi.org/10.1016/j.soilbio.2009.05.015

    Article  CAS  Google Scholar 

  • Benbi, D. K., Sharma, S., Toor, A. S., Brar, K., Sodhi, G. P. S., & Garg, A. K. (2016). Differences in soil organic carbon pools and biological activity between organic and conventionally managed rice-wheat fields. Organic Agriculture. https://doi.org/10.1007/s13165-016-0168-0

    Article  Google Scholar 

  • Bhattacharyya, P., Nayak, A. K., Mohanty, S., Tripathi, R., Shahid, M., Kumar, A., Raja, R., Panda, B. B., Roy, K. S., Neogi, S., Dash, P. K., Shukla, A. K., & Rao, K. S. (2013a). Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil and Tillage Research, 129, 93–105. https://doi.org/10.1016/j.still.2013.01.014

    Article  Google Scholar 

  • Bhattacharyya, P., Neogi, S., Roy, K. S., Dash, P. K., Tripathi, R., & Rao, K. S. (2013b). Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutrient Cycling in Agroecosystems, 95, 133–144. https://doi.org/10.1007/s10705-013-9553-1

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Neogi, S., Adhya, T. K., Rao, K. S., & Manna, M. C. (2012a). Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 124, 119–130. https://doi.org/10.1016/j.still.2012.05.015

    Article  Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Neogi, S., Chakravorti, S. P., Behera, K. S., Das, K. M., Bardhan, S., & Rao, K. S. (2012b). Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutrient Cycling in Agroecosystems, 94, 273–285. https://doi.org/10.1007/s10705-012-9540-y

    Article  Google Scholar 

  • Bray, R. H., & Kurtz, L. T. (1945). Determination of total organic and available forms of phosphorus in soils. Soil Science, 59, 39–45.

    Article  CAS  Google Scholar 

  • Calbrix, R., Laval, K., & Barray, S. (2005). Analysis of the potential functional diversity of the bacterial community in soil: A reproducible procedure using sole-carbon-source utilization profiles. European Journal of Soil Biology, 41, 11–20. https://doi.org/10.1016/j.ejsobi.2005.02.004

    Article  CAS  Google Scholar 

  • Casida, L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376. https://doi.org/10.1097/00010694-196412000-00004

    Article  CAS  Google Scholar 

  • Chang, E. H., Chen, T. H., Tian, G., & Chiu, C. Y. (2016). The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations. Applied Soil Ecology, 98, 213–220. https://doi.org/10.1016/j.apsoil.2015.10.018

    Article  Google Scholar 

  • Chaudhary, S., Dheri, G. S., & Brar, B. S. (2017). Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Tillage Res., 166, 59–66. https://doi.org/10.1016/j.still.2016.10.005

    Article  Google Scholar 

  • Chen, C., Zhang, J., Lu, M., Qin, C., Chen, Y., Yang, L., Huang, Q., Wang, J., Shen, Z., & Shen, Q. (2016). Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biology and Fertility of Soils, 52, 455–467. https://doi.org/10.1007/s00374-016-1089-5

    Article  CAS  Google Scholar 

  • Chinnadurai, C., Gopalaswamy, G., & Balachandar, D. (2014). Impact of long-term organic and inorganic nutrient managements on the biological properties and eubacterial community diversity of the Indian semi-arid Alfisol. Archives of Agronomy and Soil Science, 60, 531–548. https://doi.org/10.1080/03650340.2013.803072

    Article  CAS  Google Scholar 

  • Choi, K. H., & Dobbs, F. C. (1999). Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiol Methods, 36, 203–213. https://doi.org/10.1016/S0167-7012(99)00034-2

    Article  CAS  Google Scholar 

  • Cookson, W. R., Osman, M., Marschner, P., Abaye, D. A., Clark, I., Murphy, D. V., Stockdale, E. A., & Watson, C. A. (2007). Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology & Biochemistry, 39, 744–756. https://doi.org/10.1016/j.soilbio.2006.09.022

    Article  CAS  Google Scholar 

  • Dash, P. K., Bhattacharyya, P., Shahid, M., Roy, K. S., Swain, C. K., Tripathi, R., & Nayak, A. K. (2017). Low carbon resource conservation techniques for energy savings, carbon gain and lowering GHGs emission in lowland transplanted rice. Soil and Tillage Research, 174, 45–57. https://doi.org/10.1016/j.still.2017.06.001

    Article  Google Scholar 

  • Dash, P. K., Bhattacharyya, P., Shahid, M., Roy, P. S., Padhy, S. R., Swain, C. K., & Nayak, A. K. (2019). Structural diversity and efficacy of culturable cellulose decomposing bacteria isolated from rice–pulse resource conservation practices. Journal of Basic Microbiology, 59, 963–978. https://doi.org/10.1002/jobm.201900275

    Article  CAS  Google Scholar 

  • Dong, W., Zhang, X., Dai, X., Fu, X., & Yang, F. (2014). Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 84, 140–147. https://doi.org/10.1016/j.apsoil.2014.06.007

    Article  Google Scholar 

  • Dossou-Yovo, E. R., Brüggemann, N., Ampofo, E., Igue, A. M., Jesse, N., Huat, J., & Agbossou, E. K. (2016). Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin. Soil Tillage Res., 163, 152–159. https://doi.org/10.1016/j.still.2016.05.019

    Article  Google Scholar 

  • Eivazi, F., & Tabatabai, M. (1988). Glucosidases and Galacosidases in Soils. Soil Biology & Biochemistry, 20, 601–606.

    Article  CAS  Google Scholar 

  • García-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Lon-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology & Biochemistry, 32, 1907–1913. https://doi.org/10.1016/S0038-0717(00)00165-6

    Article  Google Scholar 

  • Gu, Y., Zhang, X., Tu, S., & Lindström, K. (2009). Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 45, 239–246. https://doi.org/10.1016/j.ejsobi.2009.02.005

    Article  CAS  Google Scholar 

  • Guanghua, W., Junjie, L., Xiaoning, Q., Jian, J., Yang, W., & Xiaobing, L. (2008). Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods. Acta Ecologica Sinica, 28, 220–226. https://doi.org/10.1016/S1872-2032(08)60023-2

    Article  Google Scholar 

  • Guo, L., Zheng, S., Cao, C., & Li, C. (2016). Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China. Science and Reports, 6, 33155. https://doi.org/10.1038/srep33155

    Article  CAS  Google Scholar 

  • Gupta, S., Srivastava, S., Singh, R., Chaudhari, S. K., Sharma, D. K., Singh, S. K., Sarkar, D., Gupta Choudhury, S., Srivastava, S., Singh, R., Chaudhari, S. K., Sharma, D. K., Singh, S. K., & Sarkar, D. (2014). Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil. Soil and Tillage Research, 136, 76–83. https://doi.org/10.1016/j.still.2013.10.001

    Article  Google Scholar 

  • Hartmann, M., Fliessbach, A., Oberholzer, H.-R., & Widmer, F. (2006). Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities. FEMS Microbiology Ecology, 57, 378–388. https://doi.org/10.1111/j.1574-6941.2006.00132.x

    Article  CAS  Google Scholar 

  • Hati, K. M., Swarup, A., Dwivedi, A. K., Misra, A. K., & Bandyopadhyay, K. K. (2007). Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. Agriculture, Ecosystems & Environment, 119, 127–134. https://doi.org/10.1016/j.agee.2006.06.017

    Article  Google Scholar 

  • Hati, K. M., Swarup, A., Mishra, B., Manna, M. C. C., Wanjari, R. H. H., Mandal, K. G. G., & Misra, A. K. K. (2008). Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol. Geoderma, 148, 173–179. https://doi.org/10.1016/j.geoderma.2008.09.015

    Article  CAS  Google Scholar 

  • Huang, D. L., Zeng, G. M., Feng, C. L., Hu, S., Lai, C., Zhao, M. H., Su, F. F., Tang, L., & Liu, H. L. (2010). Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresource Technology, 101, 4062–4067. https://doi.org/10.1016/j.biortech.2009.12.145

    Article  CAS  Google Scholar 

  • Jacobsen, C. S., & Hjelmsø, M. H. (2014). ScienceDirect Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology, 27, 15–20. https://doi.org/10.1016/j.copbio.2013.09.003

    Article  CAS  Google Scholar 

  • Kibblewhite, M. G., Ritz, K., & Swift, M. J. (2008). Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 685–701. https://doi.org/10.1098/rstb.2007.2178

    Article  CAS  Google Scholar 

  • Kumar, U., Shahid, M., Tripathi, R., Mohanty, S., Kumar, A., Bhattacharyya, P., Lal, B., Gautam, P., Raja, R., Panda, B. B., Jambhulkar, N. N., Shukla, A. K., & Nayak, A. K. (2017). Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecological Indicators, 73, 536–543. https://doi.org/10.1016/j.ecolind.2016.10.014

    Article  CAS  Google Scholar 

  • Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A. P., Gami, S. K., Bhandari, A. L., Amin, R., Yadav, C. R., Bhattarai, E. M., Das, S., … Hobbs, P. R. (2003). How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crops Research, 81, 159–180. https://doi.org/10.1016/S0378-4290(02)00219-8

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Lal, R. (2015). Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil and Water Conservation, 70, 55A-62A. https://doi.org/10.2489/jswc.70.3.55A

    Article  Google Scholar 

  • Li, P., Wang, X., Yuan, X., Wang, X., Cao, Y., & Cui, Z. (2011). Screening of a composite microbial system and its characteristics of wheat straw degradation. Agricultural Sciences in China, 10, 1586–1594. https://doi.org/10.1016/S1671-2927(11)60155-7

    Article  CAS  Google Scholar 

  • Li, Y.-J., Chen, X., Shamsi, I. H., Fang, P., & Lin, X.-Y. (2012). Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil. Pedosphere, 22, 661–672. https://doi.org/10.1016/S1002-0160(12)60051-4

    Article  CAS  Google Scholar 

  • Lienhard, P., Tivet, F., Chabanne, A., Prévost-bouré, N. C., Séguy, L., Maron, P., & Ranjard, L. (2013). No-till and cover crops shift soil microbial abundance and diversity in Laos tropical grasslands. Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-012-0099-4

    Article  Google Scholar 

  • Liu, E., Teclemariam, S. G., Yan, C., Yu, J., Gu, R., Liu, S., He, W., & Liu, Q. (2014a). Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma, 213, 379–384. https://doi.org/10.1016/j.geoderma.2013.08.021

    Article  CAS  Google Scholar 

  • Liu, E., Yan, C., Mei, X., Zhang, Y., & Fan, T. (2013). Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PLoS ONE. https://doi.org/10.1371/journal.pone.0056536

    Article  Google Scholar 

  • Liu, M.-Y., Chang, Q.-R., Qi, Y.-B., Liu, J., & Chen, T. (2014b). Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. CATENA, 115, 19–28. https://doi.org/10.1016/j.catena.2013.11.002

    Article  CAS  Google Scholar 

  • Mandal, A., Patra, A. K., Singh, D., Swarup, A., & Ebhin Masto, R. (2007). Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresource Technology, 98, 3585–3592. https://doi.org/10.1016/j.biortech.2006.11.027

    Article  CAS  Google Scholar 

  • Manna, M. C., Swarup, A., Wanjari, R. H., Ravankar, H. N., Mishra, B., Saha, M. N., Singh, Y. V., Sahi, D. K., & Sarap, P. A. (2005). Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Research, 93, 264–280. https://doi.org/10.1016/j.fcr.2004.10.006

    Article  Google Scholar 

  • Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., Liang, Y., & Hou, Z. (2016). Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agriculturae Scandinavica, Section B: Soil & Plant Science, 66, 117–126. https://doi.org/10.1080/09064710.2015.1078838

    Article  CAS  Google Scholar 

  • Mohanty, S., Nayak, A. K., Kumar, A., Tripathi, R., Shahid, M., Bhattacharyya, P., Raja, R., & Panda, B. B. (2013). Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure. European Journal of Soil Biology. https://doi.org/10.1016/j.ejsobi.2013.07.004

    Article  Google Scholar 

  • Moharana, P. C., Sharma, B. M., Biswas, D. R., Dwivedi, B. S., & Singh, R. V. (2012). Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat cropping system in an Inceptisol of subtropical India. Field Crops Research, 136, 32–41. https://doi.org/10.1016/j.fcr.2012.07.002

    Article  Google Scholar 

  • Muhammad, N., Dai, Z. M., Xiao, K. C., Meng, J., Brookes, P. C., Liu, X. M., Wang, H. Z., Wu, J. J., & Xu, J. M. (2014). Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma, 226, 270–278.

    Article  Google Scholar 

  • Nayak, A. K., Gangwar, B., Shukla, A. K., Mazumdar, S. P., Kumar, A., Raja, R., Kumar, A., Kumar, V., Rai, P. K., & Mohan, U. (2012). Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice-wheat system in Indo Gangetic Plains of India. Field Crops Research, 127, 129–139. https://doi.org/10.1016/j.fcr.2011.11.011

    Article  Google Scholar 

  • Pandey, D., Agrawal, M., Bohra, J. S., & Singh, J. (2014). Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil and Tillage Research, 136, 51–60. https://doi.org/10.1016/j.still.2013.09.013

    Article  Google Scholar 

  • Preethi, B., Poorniammal, R., Balachandar, D., Karthikeyan, S., Chendrayan, K., Bhattacharyya, P., & Adhya, T. K. (2013). Long-term organic nutrient managements foster the biological properties and carbon sequestering capability of a wetland rice soil. Archives of Agronomy and Soil Science, 59, 1607–1624. https://doi.org/10.1080/03650340.2012.755260

    Article  Google Scholar 

  • Raja, R., Nayak, A. K., Shukla, A. K., Rao, K. S., Gautam, P., Lal, B., Tripathi, R., Shahid, M., Panda, B. B., Kumar, A., Bhattacharyya, P., Bardhan, G., Gupta, S., & Patra, D. K. (2015). Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4902-y

    Article  Google Scholar 

  • Ramirez-Villanueva, D. A., Bello-López, J. M., Navarro-Noya, Y. E., Luna-Guido, M., Verhulst, N., Govaerts, B., & Dendooven, L. (2015). Bacterial community structure in maize residue amended soil with contrasting management practices. Applied Soil Ecology, 90, 49–59. https://doi.org/10.1016/j.apsoil.2015.01.010

    Article  Google Scholar 

  • Ross, D. J. (1990). Estimation of soil microbial c by a fumigation extraction method: Influence of seasons, soils and calibration with the fumigation incubation procedure. Soil Biology & Biochemistry, 22, 295–300. https://doi.org/10.1016/0038-0717(90)90103-7

    Article  Google Scholar 

  • Shahid, M., Nayak, A. K., Puree, C., Tripathi, R., Lal, B., Gautam, P., Bhattacharyya, P., Mohanty, S., Kumar, A., Panda, B. B., Kumar, U., & Shukla, A. K. (2017). Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil Tillage Res., 170, 136–146. https://doi.org/10.1016/j.still.2017.03.008

    Article  Google Scholar 

  • Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70, 555. https://doi.org/10.2136/sssaj2004.0347

    Article  CAS  Google Scholar 

  • Snyder, J. D., & Trofymow, J. A. (1984). A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Communications in Soil Science and Plant Analysis, 15, 587–597. https://doi.org/10.1080/00103628409367499

    Article  CAS  Google Scholar 

  • Su, J. Q., Ding, L. J., Xue, K., Yao, H. Y., Quensen, J., Bai, S. J., Wei, W. X., Wu, J. S., Zhou, J., Tiedje, J. M., & Zhu, Y. G. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Molecular Ecology. https://doi.org/10.1111/mec.13010

    Article  Google Scholar 

  • Tang, Y., Zhang, X., Li, D., Wang, H., Chen, F., Fu, X., Fang, X., Sun, X., & Yu, G. (2016). Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology & Biochemistry, 103, 284–293. https://doi.org/10.1016/j.soilbio.2016.09.001

    Article  CAS  Google Scholar 

  • Tautges, N. E., Sullivan, T. S., Reardon, C. L., & Burke, I. C. (2016). Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Applied Soil Ecology, 108, 258–268. https://doi.org/10.1016/j.apsoil.2016.09.003

    Article  Google Scholar 

  • Tejada, M., Gonzalez, J. L., García-Martínez, A. M., & Parrado, J. (2008). Application of a green manure and green manure composted with beet vinasse on soil restoration: Effects on soil properties. Bioresource Technology, 99, 4949–4957. https://doi.org/10.1016/j.biortech.2007.09.026

    Article  CAS  Google Scholar 

  • Tian, S., Ning, T., Wang, Y., Liu, Z., Li, G., Li, Z., & Lal, R. (2016). Crop yield and soil carbon responses to tillage method changes in North China. Soil and Tillage Research, 163, 207–213. https://doi.org/10.1016/j.still.2016.06.005

    Article  Google Scholar 

  • Turner, T. R., Ramakrishnan, K., Walshaw, J., Heavens, D., Alston, M., Swarbreck, D., Osbourn, A., Grant, A., & Poole, P. S. (2013). Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME Journal, 7, 2248–2258. https://doi.org/10.1038/ismej.2013.119

    Article  CAS  Google Scholar 

  • Van Balen, D., Cuperus, F., Haagsma, W., De Haan, J., Van Den Berg, W., & Sukkel, W. (2023). Crop yield response to long-term reduced tillage in a conventional and organic farming system on a sandy loam soil. Soil and Tillage Research, 225, 105553. https://doi.org/10.1016/j.still.2022.105553

    Article  Google Scholar 

  • Wanjiru, L., Acosta-martínez, V., Debryun, J., Schaeffer, S., Tyler, D., Odoi, E., Walker, F., Eash, N., Mbuthia, L. W., Acosta-martínez, V., DeBruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, M., Walker, F., & Eash, N. (2015). Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biology & Biochemistry, 89, 24–34. https://doi.org/10.1016/j.soilbio.2015.06.016

    Article  CAS  Google Scholar 

  • Weber, K. P., Gehder, M., & Legge, R. L. (2008). Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. Water Research, 42, 180–188. https://doi.org/10.1016/j.watres.2007.06.055

    Article  CAS  Google Scholar 

  • Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture: A review. Agronomy for Sustainable Development, 34, 1–20. https://doi.org/10.1007/s13593-013-0180-7

    Article  Google Scholar 

  • Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C. G., & Neue, H. U. (2000). A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology and Fertility of Soils, 30, 510–519. https://doi.org/10.1007/s003740050030

    Article  CAS  Google Scholar 

  • Xu, W., & Ge, Z. (2015). Application and optimization of biolog ecoplates in functional diversity studies of soil microbial. Communities, 5, 1–6.

    Google Scholar 

  • Yu, C., Hu, X. M. M., Deng, W., Li, Y., Xiong, C., Ye, C. H. H., Han, G. M. M., & Li, X. (2015). Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Applied Soil Ecology, 86, 30–40. https://doi.org/10.1016/j.apsoil.2014.09.013

    Article  Google Scholar 

  • Zhang, Q. C., Shamsi, I. H., Xu, D. T., Wang, G. H., Lin, X. Y., Jilani, G., Hussain, N., & Chaudhry, A. N. (2012). Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Applied Soil Ecology, 57, 1–8. https://doi.org/10.1016/j.apsoil.2012.02.012

    Article  Google Scholar 

  • Zhang, X., Zhong, Y., Yang, S., Zhang, W., Xu, M., Ma, A., Zhuang, G., Chen, G., & Liu, W. (2014). Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresource Technology, 170, 183–195. https://doi.org/10.1016/j.biortech.2014.07.093

    Article  CAS  Google Scholar 

  • Zhong, W. H., & Cai, Z. C. (2007). Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 36, 84–91. https://doi.org/10.1016/j.apsoil.2006.12.001

    Article  Google Scholar 

  • Zhu, L., Hu, N., Yang, M., Zhan, X., & Zhang, Z. (2014). Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system. PLoS ONE. https://doi.org/10.1371/journal.pone.0088900

    Article  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge Director NRRI and NRRI-Institute Project No. 2.6 entitled “Resource Conservation Technologies and Conservation Agriculture for sustainable rice production” for providing the field and laboratory facilities for conducting this work. Some portions of this manuscript are part of the doctoral research findings of PK Dash.

Funding

This study has no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Designed the project: AKN, PB, PKD, MS; Performed the experiments: PKD, SRP; analyzed the data: PKD, AS, UK, PB; Wrote paper: PKD, AKN, UK; Editing: AKN, PB.

Corresponding authors

Correspondence to P. K. Dash or A. K. Nayak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (KML 2 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, P.K., Bhattacharyya, P., Shahid, M. et al. Impact of long-term resource conservation techniques on biogeochemical characteristics and biological soil quality indicators in a rice green-gram farming system. Environ Geochem Health 45, 7979–7997 (2023). https://doi.org/10.1007/s10653-023-01713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01713-6

Keywords

Navigation