Skip to main content

Advertisement

Log in

Time regularities of strontium concentration in drinking groundwater distant from the sea coast

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This paper confirms the regularities of the formation of increased concentrations of strontium (Sr) in fresh groundwater used for drinking water supply, depending on the time they are residen in the carbonate deposits of the aquifer. On average, every thousand years, the Sr concentration increases by 2.1–3.5 mg L−1. In addition, high strontium content is positively correlated with altitude and well depth and negatively correlated with redox conditions in the aquifer. Large relief elevations are associated with the development of marginal moraine deposits from the Last Glacial Period composed predominantly of clay, which contributes to a decrease in water exchange. The high Sr content is associated with the dissolution of significant formations of celestite and strontianite, up to their ore occurrences. For this reason, the saturation indices (SIs) for celestite and strontianite correlate with TDS and rise to − 1.42 and 2.05, respectively. Low Sr values do not correlate with the residence time of groundwater in the aquifer or the depth of wells and tend to depressions in the relief, with a virtual absence of overlying sediments and positive Eh values, which indicates an active water exchange. The low level of Sr is associated with the dissolution of gypsum, calcite, and dolomite containing strontium as an impurity. This causes the SIs for gypsum, calcite, and dolomite to correlate with TDS, while for celestite and strontianite, the SI drops to − 5.02 and − 0.92, respectively. The established patterns make it possible to more reasonably choose places for the construction of water wells to obtain drinking water of standard quality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arslanov, Kh. A., Tertychnaya, T. V., & Chernov, S. B. (1993). Problems and methods of dating of low-activity samples by liquid scintillation counting. Radiocarbon, 35, 393–398.

    Article  CAS  Google Scholar 

  • Back, W., Hanshaw, B. B., Plummer, L. N., Rahn, P. H., Rightmere, C. T., & Rubin, M. (1983). Process and rate of dedolomitization: Mass transfer and 14C dating in a regional carbonate aquifer. Geological Society of America Bulletin, 94, 1415–1429. https://doi.org/10.1130/0016-7606(1983)94%3c1415:PARODM%3e2.0.CO;2

    Article  CAS  Google Scholar 

  • Bartley, J. C., & Reber, E. F. (1961). Toxic effects of stable strontium in young pigs. Journal of Nutrition, 75, 21–28.

    Article  CAS  Google Scholar 

  • Bui, D. T., Khosravi, K., Karimi, M., Busico, G., Khozani, Z. S., Nguyen, H., Mastrocicco, M., Tedesco, D., Cuoco, E., & Kazakis, N. (2020). Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 715, 136836. https://doi.org/10.1016/j.scitotenv.2020.136836

    Article  CAS  Google Scholar 

  • Colvin, L. B., & Creger, C. R. (1967). Stable strontium and experimental bone anomalies. Federation Proceedings, Federation of American Societies for Experimental Biology, 26, 416.

    Google Scholar 

  • Colvin, L. B., Creger, C. R., Ferguson, T. M., & Crookshank, H. R. (1972). Experimental epiphyseal cartilage anomalies by dietary strontium. Poultry Science, 51, 576–581.

    Article  CAS  Google Scholar 

  • Curzon, M. E. J., & Spector, P. C. (1977). Enamel mottling in a high strontium area of the USA. Community Dentistry and Oral Epidemiology, 5, 243–247.

    Article  CAS  Google Scholar 

  • Devyatova, E. I. (1982). Late Pleistocene environment and its impact on human population in the Severnaya Dvina basin and in Karelia (p. 156). Karelia (in Russian).

  • Ding, D., Kong, L., Jiang, D., Wei, J., Cao, S., Li, X., Zheng, L., & Deng, S. (2022). Source apportionment and health risk assessment of chemicals of concern in soil, water and sediment at a large strontium slag pile area. Journal of Environmental Management, 304, 114228. https://doi.org/10.1016/j.jenvman.2021.114228

    Article  CAS  Google Scholar 

  • Ermakov, V., Bech, J., Gulyaeva, U., Tyutikov, S., Safonov, V., Danilova, V., & Roca, N. (2020). Relationship of the mobile forms of calcium and strontium in soils with their accumulation in meadow plants in the area of Kashin-Beck endemia. Environmental Geochemistry and Health, 42, 159–171.

    Article  CAS  Google Scholar 

  • Ferronsky, V. I., & Polyakov, V. A. (2012). Isotopes of the earth’s hydrosphere. Springer. https://doi.org/10.1007/978-94-007-2856-1-1

    Book  Google Scholar 

  • Gad, S. C. (2014). Strontium. In P. H. Wexler (Ed.), Encyclopedia of toxicology (3rd ed., pp. 405–406). Acad. press.

    Chapter  Google Scholar 

  • Giménez-Forcada, E., & Vega-Alegre, M. (2015). Arsenic, barium, strontium and uranium geochemistry and their utility as tracers to characterize groundwaters from the Espadán-Calderona Triassic Domain, Spain. Science of the Total Environment, 512–513, 599–612. https://doi.org/10.1016/j.scitotenv.2014.12.010

    Article  CAS  Google Scholar 

  • Han, L.-F., & Plummer, N. (2013). Revision of Fontes and Garnier’s model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. Chemical Geology, 351, 105–114.

    Article  CAS  Google Scholar 

  • Han, L.-F., & Plummer, N. (2016). A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth Science Reviews, 152, 119–142.

    Article  CAS  Google Scholar 

  • Höllriegl, V., & München, H. Z. (2011). Strontium in the environment and possible human health effects. In Jerome Nriagu (Ed.), Encyclopedia environmental health (pp. 268–275). Germ. Res. Cent. Env. Health. https://doi.org/10.1016/B978-0-444-52272-6.00638-3

  • Hubberten, H. W., Andreev, A., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Jakobsson, M., Kuzmina, S., Larsen, E., Lunkka, J. P., Lyså, A., Mangerud, J., Möller, P., Saarnisto, M., Schirrmeister, L., Sher, A. V., Siegert, C., … Svendsen, J. I. (2004). The periglacial climate and environment in northern Eurasia during the last glaciation. Quaternary Science Reviews, 23, 1333–1357.

    Article  Google Scholar 

  • Ingerson, E., & Pearson, F. J. (1964). Estimation of age and rate of motion of groundwater by the 14C method. In Recent researches in the fields of hydrosphere (pp. 263–283). Atm. and Nucl. Chem.

  • Inoue, S. (1981). Chemistry of strontium. In S. C. Skoryna (Ed.), Handbook of stable strontium (pp. 11–18). Springer. https://doi.org/10.1007/978-1-4684-3698-3_2

    Chapter  Google Scholar 

  • Ivanova, N. I. (2014). Strontium distridution patterns in groundwater and aquifer host rocks in the southeastern part of the Severnaya Dvina artesian basin. Moscow University Geology Bulletin, 69–4, 258–266.

    Article  Google Scholar 

  • Keesari, T., Sabarathinam, C., Sinha, U. K., Pethaperumal, Thilagavathi, R., & Kamaraj, P. (2022). Fate and transport of strontium in groundwater from a layered sedimentary aquifer system. Chemosphere, 307, 136015. https://doi.org/10.1016/j.chemosphere.2022.136015

    Article  CAS  Google Scholar 

  • Khandare, A. L., Validandi, V., Rajendran, A., Singh, T. G., Thingnganing, L., Kurella, S., Nagaraju, R., Dheeravath, S., Vaddi, N., Kommu, S., & Maddela, Y. (2020). Health risk assessment of heavy metals and strontium in groundwater used for drinking and cooking in 58 villages of Prakasam district, Andhra Pradesh, India. Environmental Geochemistry and Health, 42, 3675–3701. https://doi.org/10.1007/s10653-020-00596-1

    Article  CAS  Google Scholar 

  • Krainov, S. R., Ryzhenko, B. N. & Shvets, V. M. (2012). Geochemistry of groundwater. In Fundamental, applied and environmental aspects (p. 672). CenterLitNefteGaz (In Russian).

  • Krainov, S. R., & Zakutin, V. A. (1994). Geochemical-ecological state of groundwater in Russia. Geochemistry, 3, 312–329.

    Google Scholar 

  • Larsen, E., Lyså, A., Demidov, I., Funder, S., Houmark-Nielsen, M., Kjær, K. H., & Murray, A. S. (1999). Age and extent of the Scandinavian Ice Sheet in northwest Russia. Boreas, 28, 115–132

  • Levine, N. S., Roberts, S. J., & Aring, J. L. (2002). Geological controls on the distribution and origin of selected inorganic ions in Ohio groundwater. Environmental and Engineering Geoscience, 8–4, 319–328. https://doi.org/10.2113/8.4.319

    Article  Google Scholar 

  • Luczaj, J., & Masarik, K. (2015). Groundwater quantity and quality issues in a water-rich region: Examples from Wisconsin, USA. Resources, 4, 323–357. https://doi.org/10.3390/resources4020323

    Article  Google Scholar 

  • Lyså, A., Demidov, I., Houmark-Nielsen, M., & Larsen, E. (2001). Late Pleistocene stratigraphy and sedimentary environment of the Arkhangelsk area, northwest Russia. Global and Planetary Change, 31, 179–199.

    Article  Google Scholar 

  • Malaisse, F., & Mathieu, F. (Eds.). (2008). Big bone disease, a multidisciplinary approach of Kashin-Beck disease in Tibet Autonomous Region (PR China) (p. 148). Les presses universitaires de Gembloux.

    Google Scholar 

  • Malov, A. I. (2003). Groundwater of the South-East White Sea: Formation, role in geological processes (p. 234). UB RAS (in Russian). https://www.elibrary.ru/item.asp?id=19474464

  • Malov, A. I. (2023). Features of a High Strontium Concentration in Drinking Groundwater near the Sea Coast. Doklady Earth Sciences. https://doi.org/10.1134/S1028334X23601098 (in print)

  • Malov, A. I. (2000). Formation of strontium-containing waters in the marginal part of the Mezen syneclise. In S. L. Shvartsev (Ed.), Fundamental problems of water and water resources at the turn of the 3rd millennium (pp. 233–235). Publ. house of sci. and tech. lit. (in Russian).

    Google Scholar 

  • Malov, A. I., Sidkina, E. S., & Ryzhenko, B. N. (2017). Model of the Lomonosov diamond deposit as a water–rock system: Migration species, groundwater saturation with rock-forming and ore minerals, and ecological assessment of water quality. Geochemistry International, 55, 1118–1130. https://doi.org/10.1134/S0016702917090038

    Article  CAS  Google Scholar 

  • Malov, A. I., & Tokarev, I. V. (2019). Using stable isotopes to characterize the conditions of groundwater formation on the eastern slope of the Baltic Shield (NW Russia). Journal of hydrology, 578, 124130. https://doi.org/10.1016/j.jhydrol.2019.124130

    Article  CAS  Google Scholar 

  • McCartan, L., Plummer, L. N., Hosterman, J. W., Busenberg, E., Dwornik, E. J., Duerr, A. D., Miller, R. L., Kiesler, J. L. (1988). Celestine (SrSO4) in Hardee and De Soto counties, Florida. In G. S. Gohn (Ed.), Proceedings of the 1988 U.S. geological survey workshop on the geology and geohydrology of the Atlantic coastal plain (vol. 1059, pp. 129–138). U.S. Geol. Surv. Circ. https://doi.org/10.3133/cir1059

  • Merzlyakov, G. A. (1979). Permian saline basins of Eurasia (p. 142). Science (in Russian).

  • Mook, W. G. (1972). On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. In Proc. of Eighth International Conference on radiocarbon dating (vol. 1, pp. 342–352). Royal Society of New Zealand.

  • Mook, W. G. (1976). The dissolution-exchange model for dating groundwater with 14C. Interpretation of environmental isotope and hydrochemical data in groundwater hydrology (pp. 213–225). IAEA.

    Google Scholar 

  • Münnich, K. O. (1957). Messungen des 14C-Gehaltes von hartem Grundwasser. Naturwissenschaften, 44, 32–34.

    Article  Google Scholar 

  • Münnich, K. O. (1968). Isotopendatierung von Grundwasser. Naturwissenschaften, 55, 3–11.

    Article  Google Scholar 

  • Musgrove, M. (2021). The occurrence and distribution of strontium in U.S. groundwater. Applied Geochemistry, 126, 104867. https://doi.org/10.1016/j.apgeochem.2020.104867

    Article  CAS  Google Scholar 

  • Musgrove, M., & Banner, J. L. (2004). Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards aquifer, central Texas. Geochimica et Cosmochimica Acta, 68, 1007–1020. https://doi.org/10.1016/j.gca.2003.08.014

    Article  CAS  Google Scholar 

  • Nichols, M. S., & McNall, D. R. (1957). Strontium content of Wisconsin municipal waters. Journal American Water Works Association, 49, 1493–1498.

    Article  CAS  Google Scholar 

  • Norman, J. E., Toccalino, P. L., & Morman, S. A. (2018). In Health-based screening levels for evaluating water-quality data (2rd edn.) U.S. Geol. Surv. National Water-Quality Assessment Program web page. https://doi.org/10.5066/F71C1TWP

  • Odum, H. T. (1951). Strontium in Florida waters. In A. P. Black, E. Brown (Eds.), Chemical character of Florida waters. Florida State Board of Conservation, Division of Water Survey and Research Papers (vol. 6, pp. 20–21).

  • Özgür, S., Sümer, H., & Koҫoǧlu, G. (1996). Rickets and soil strontium. Archives of Disease in Childhood, 75, 524–526.

    Article  Google Scholar 

  • Partington, J. R. (1981). Early history of strontium. In S. C. Skoryna (Ed.), Handbook of stable strontium (pp. 1–9). Plenum. https://doi.org/10.1007/978-1-4684-3698-3_1

    Chapter  Google Scholar 

  • Pearson, F. J., & Hanshaw Jr. (1970). Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. Isotope hydrology (pp. 271–286). IAEA.

    Google Scholar 

  • Plechacek, A., Scott, S. R., Gotkowitz, M. B., & Ginder-Vogel, M. (2022). Strontium and radium occurrence at the boundary of a confined aquifer system. Applied Geochemistry, 142, 105332. https://doi.org/10.1016/j.apgeochem.2022.105332

    Article  CAS  Google Scholar 

  • Plummer, L. N. (1977). Defining reactions and mass transfer in part of the Floridan Aquifer. Water Resources Research, 13, 801–812.

    Article  CAS  Google Scholar 

  • Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 ka cal BP). Radiocarbon. https://doi.org/10.1017/RDC.2020.41

    Article  Google Scholar 

  • SanRaR 2.1.4.1074-01. (2001). Drinking water. Hygienic requirements for water quality of centralized drinking water supply systems. Quality control. Sanitary and epidemiological rules and regulations approved by the Chief State Sanitary Doctor of the Russian Federation on September 26, 2001.

  • Savinov Yu, A. (1971). Quaternary geology of the north of the Russian Plain (p. 192). Leningrad University Press (In Russian).

  • Schoeller, H., 1967. Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Res (vol. 33, pp. 44–52). UNESCO.

  • Schoeller, H. (1977). Geochemistry of groundwater. In Groundwater studies—An international guide for research and practice (vol. 15, pp. 1–18). UNESCO.

  • Sonnenfeld, P. (1984). Brines and evaporates (p. 613). Academic Press.

    Google Scholar 

  • Stankovsky, A.F., Verichev, E.M., Dobeiko, I.P., 1985. Vendian of the southeastern White Sea. In B. S. Sokolov, & M. A. Fedonkin (Eds.), Vendian system. Historical-geological and paleontological substantiation. Vol. 2. Stratigraphy and geological processes (pp. 67–76). Nauka.

  • Stankovsky, A. F., Verichev, E. M., Grib, V. P., & Dobeiko, I. P. (1981). Vendian of the southeastern White Sea. Izv. Academy of sciences of the USSR. Ser. Geol., 2, 78–87.

    Google Scholar 

  • Staritsky, Yu, G. (ed.) (1981). History of development and minerageny of the cover of the Russian platform (p. 224). Nedra (In Russian).

  • Stuiver, M., Reimer, P. J., & Reimer, R. W. (2021). CALIB 8.2 [WWW program] at http://calib.org. Accessed 2021–2–16.

  • Turekian, K. K. (1972). Chemistry of the earth (p. 131). Holt, Rinehart and Winston Inc.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2014). Health effects support document for strontium. EPA 820-P-14-0012014. 2014. www.epa.gov/safewater/ccl/pdf/Strontium.pdf

  • Valyashko, M. G. (1955). Basic chemical types of natural waters and conditions for their formation. Doklady Akademii Nauk, 102–2, 315–318. (In Russian).

    Google Scholar 

  • Valyashko, M. G. (1962). On the role of sea water in the formation of the chemical composition of natural waters of sedimentary strata. Geochemistry, 2, 132–141. (In Russian).

    Google Scholar 

  • Wang, Z. (1999). A historic overview of research and control on Kashin-Beck disease in China. Chinese Journal of Endemiology, 18, 161–163.

    CAS  Google Scholar 

  • Zamana, L. V., Rikhvanov, L. P., Soktoev, B. R., Baranovskaya, N. V., Epova, E. S., Solodukhina, M. A., Mikhailova, L. A., Kopylova, Y. G., & Khvashchevskaya, A. A. (2019). New data on chemical composition of natural waters in the area of distribution of Urov (Kaschin–Beck) disease (Transbaikal region). Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 330–1, 121–133. (in Russian).

    Google Scholar 

  • Zharkov, M. A. (1973). Paleozoic salt-bearing formations of the world (p. 392). Nedra (in Russian).

Download references

Funding

This work was supported by the Russian Science Foundation and the Government of the Arkhangelsk region (projects no. № 23-27-10004), https://rscf.ru/project/23-27-10004/

Author information

Authors and Affiliations

Authors

Contributions

AM wrote the manuscript; DE determined the concentration of strontium, AM and SD collected samples, ES and E.Ch..determined saturation indices

Corresponding author

Correspondence to Alexander I. Malov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malov, A.I., Sidkina, E.S., Ershova, D.D. et al. Time regularities of strontium concentration in drinking groundwater distant from the sea coast. Environ Geochem Health 45, 8097–8118 (2023). https://doi.org/10.1007/s10653-023-01710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01710-9

Keywords

Navigation