Skip to main content

Advertisement

Log in

Integrative study of Permian coal-bearing horizons: biostratigraphy, palaeovegetation, and palaeoclimate in the South Karanpura Basin

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The article deals with the integrated and comprehensive study of the coal-bearing horizons from the South Karanpura Basin to delineate the biostratigraphy, palaeovegetation, palaeodepositional settings, and palaeoclimate in and around the investigated area during the deposition of Permian sediments. Highly diversified megafloral assemblages consist 13 genera and 72 species of order Glossopteridales, Cordaitales and Equisetales are documented among which 37 taxa are newly reported from Barakar and Raniganj formations of the area. Palynoassemblages-I and -II are recovered, which demonstrate the biostratigraphic age as Kungurian and Wordian–Capitanian, respectively. Overall the vegetation represents a luxuriant forest subjugated by arborescent deciduous trees bearing Glossopteris foliage with some conifers, cordaites, filicales, and peltaspermales. The biomarker study of the basin illustrates the unimodal distribution of n-alkanes in the sample set ranges from C14 to C29 which suggests major input from a single source of organic matter. The involvement of microbial activity and algal input is suggested for the basin. A relatively moderate-to-high water level condition can be inferred from elevated n-C25. The high CIA, PIA values and A–CN–K plot suggest intense weathering conditions in the source area. The source rocks are characterized by mature clayey type with abundant clay mineral, i.e., kaolinite. The current study portrays that the Permian climate was cooler in initial phase, which later on became warm temperate with high humidity. The palaeofloral entities and geochemical parameters suggest absolute diversification of Permian flora, the existence of continental freshwater setting in the vicinity and oxic to anoxic environment with fluctuating ground water conditions during the deposition of sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adegoke, A. K., Abdullah, W. H., Hakimi, M. H., & Yandoka, B. M. S. (2014). Geochemical characterisation of Fika formation in the Chad (Bornu) Basin, Northeastern Nigeria: Implications for depositional environment and tectonic setting. Applied Geochemistry, 43, 1–12.

    Article  CAS  Google Scholar 

  • Aggarwal, N., Agrawal, S., & Thakur, B. (2019b). Palynofloral, palynofacies and carbon isotope of Permian coal deposits from the Godavari valley coalfield, South India: Insights into the age, palaeovegetation and palaeoclimate. International Journal of Coal Geology, 214, 103–285.

    Article  Google Scholar 

  • Aggarwal, N., & Jha, N. (2013). Permian palynostratigraphy and palaeoclimate of Lingala Koyagudem Coal belt, Godavari Graben, Andhra Pradesh, India. Journal of Asian Earth Sciences, 64, 38–57.

  • Aggarwal, N., Mathews, R. P., Ansari, A. H., Thakur, B., & Agrawal, S. (2022a). Palaeoenvironmental reconstruction for the Permian (lower Gondwana) succession of the Godavari valley coalfield in southern India based on a combined palynofacies, carbon isotope, and biomarker study. Journal of Palaeogeography, 11(1), 123–144.

    Article  Google Scholar 

  • Aggarwal, N., Patel, R., & Goswami, S. (2022b). A study on megafloral, palynofloral, and palynofacies of Barakar sediments at and around Balaram Opencast coal project, Talcher Basin, Odisha, India: Inferences on palaeodepositional settings, palynodiversity, palaeovegetation, and palaeoclimate. Arabian Journal of Geosciences, 15(3), 243.

    Article  Google Scholar 

  • Aggarwal, N., Thakur, B., & Jha, N. (2019a). Palaeoenvironmental changes in the lower Gondwana succession of the Godavari Graben (South India) inferred from palynofacies. Journal of Paleolimnology, 61(3), 329–343.

    Article  Google Scholar 

  • Akinlua, A., Adekola, S. A., Swakamisa, O., Fadipe, O. A., & Akinyemi, S. A. (2010). Trace element characterisation of Cretaceous orange Basin hydrocarbon source rocks. Applied Geochemistry, 25(10), 1587–1595.

    Article  CAS  Google Scholar 

  • Ali, S., Hathorne, E. C., Frank, M., Gebregiorgis, D., Stattegger, K., Stumpf, R., & Giosan, L. (2015). South A sian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the A ndaman S ea. Geochemistry, Geophysics, Geosystems, 16(2), 505–521.

    Article  CAS  Google Scholar 

  • Al-Juboury, A. I., & Al-Hadidy, A. H. (2009). Petrology and depositional evolution of the Paleozoic rocks of Iraq. Marine and Petroleum Geology, 26(2), 208–231.

    Article  CAS  Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., Cruz-Martínez, A., & Avila-Ramírez, G. (2013). Geochemistry of the jurassic and upper cretaceous shales from the Molango region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, 345(4), 185–202.

    Article  CAS  Google Scholar 

  • Asadi, S., Moore, F., & Keshavarzi, B. (2013). The nature and provenance of Golestan loess deposits in northeast Iran. Geological Journal, 48(6), 646–660.

    Article  Google Scholar 

  • Bai, Y., Liu, Z., Sun, P., Liu, R., Hu, X., Zhao, H., & Xu, Y. (2015). Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, Northeast China. Journal of Asian Earth Sciences, 97, 89–101.

    Article  Google Scholar 

  • Bajpai, U. (1990). Floristic, age and stratigraphical position of fossiliferous band in Chitra Mine area, Saharjuri Outlier, Deogarh coalfield Bihar. Journal of Palaeosciences, 37(1–3), 306–315.

    Google Scholar 

  • Bajpai, U., & Singh, S. M. (1999). On an enigmatic fossil plant from the early Permian of South Karanpura coalfield India. Journal of Palaeosciences, 48(1–3), 137–140.

    Article  Google Scholar 

  • Bakkiaraj, D., Nagendra, R., Nagarajan, R., & Armstrong-Altrin, J. S. (2010). Geochemistry of sandstones from the upper Cretaceous Sillakkudi formation, Cauvery Basin, southern India: Implication for provenance. Journal of the Geological Society of India, 76, 453–467.

    Article  Google Scholar 

  • Baruah, P. K. (2004). Provenance and depositional environment of eastern Himalayan Gondwana rocks of Siang district Arunachal Pradesh. Geological Society of India, 63(4), 440–448.

    Google Scholar 

  • Bharadwaj, D. C., & Tiwari, R. S. (1967). Sporological correlations of coal Seams in Saunda and Gidi areas of South Karanpura Coalfield, Bihar, India. Palaeobotanist, 16, 38–55.

    Google Scholar 

  • Bharadwaj, D. C., & Tripathi, A. (1976). A palynostratigraphic study of Lower Gondwana sediments from South Karanpura coalfield, Bihar India. Journal of Palaeosciences, 25(1–3), 39–61. https://doi.org/10.54991/jop.1976.995

    Article  Google Scholar 

  • Bhattacharjee, J., Ghosh, K. K., & Bhattacharya, B. (2018). Petrography and geochemistry of sandstone–mudstone from barakar formation (early Permian), Raniganj Basin, India: Implications for provenance, weathering and marine depositional conditions during lower Gondwana sedimentation. Geological Journal, 53(3), 1102–1122.

    Article  CAS  Google Scholar 

  • Casshyap, S. M., & Kumar, A. (1987). Fluvial architecture of the upper Permian Raniganj coal measure in the Damodar basin. Eastern India. Sedimentary Geology, 51(3–4), 181–213.

    Article  Google Scholar 

  • Chakraborti, B., & Ram-Awatar. (2006). Inter-relationship of the palynofloral assemblages from Mand Coalfield, Chhattisgarh and its significance. Indian Minerals, 60, 153–170.

    Google Scholar 

  • Chandra, S., & Singh, K. J. (1996). On euryphyllum feistmantel and its epidermal features. Journal of Palaeosciences, 45, 7–14.

    Article  Google Scholar 

  • Chandra, S., & Surange, K. R. (1979). Revision of the Indian species of Glossopteris.

  • Chen, Y., Wang, Y., Yu, K., Zhao, Z., & Lang, X. (2022). Occurrence characteristics and source appointment of polycyclic aromatic hydrocarbons and n-alkanes over the past 100 years in southwest China. Science of the Total Environment, 808, 151905.

    Article  CAS  Google Scholar 

  • Clift, P. D., Wan, S., & Blusztajn, J. (2014). Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth-Science Reviews, 130, 86–102.

    Article  CAS  Google Scholar 

  • Cranwell, P. A. (1977). Organic geochemistry of cam loch (Sutherland) sediments. Chemical Geology, 20, 205–221.

    Article  CAS  Google Scholar 

  • Cranwell, P. A. (1981). Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Organic Geochemistry, 3(3), 79–89.

    Article  CAS  Google Scholar 

  • Cranwell, P. A. (1984). Lipid geochemistry of sediments from Upton Broad, a small productive lake. Organic Geochemistry, 7(1), 25–37.

    Article  CAS  Google Scholar 

  • Cranwell, P. A., Eglinton, G., & Robinson, N. (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments—II. Organic Geochemistry, 11(6), 513–527.

    Article  CAS  Google Scholar 

  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51(3), 181–203.

    Article  CAS  Google Scholar 

  • Di Pasquo, M. M., & Grader, G. W. (2012). The palynology of the lower Permian (Asselian–? Artinskian) copacabana formation of Apillapampa, Cochabamba. Bolivia. Palynology, 36(2), 264–276.

    Article  Google Scholar 

  • Eglinton, G., & Hamilton, R. J. (1967). Leaf Epicuticular waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. Science, 156(3780), 1322–1335.

    Article  CAS  Google Scholar 

  • Fadipe, O. A., Carey, P. F., Akinlua, A., & Adekola, S. A. (2011). Provenance, diagenesis and reservoir quality of the lower cretaceous sandstone of the orange Basin, South Africa. South African Journal of Geology, 114(3–4), 433–448.

    Article  CAS  Google Scholar 

  • Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924.

    Article  CAS  Google Scholar 

  • Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(7–8), 745–749.

    Article  CAS  Google Scholar 

  • Ficken, K. J., Wooller, M. J., Swain, D. L., Street-Perrott, F. A., & Eglinton, G. (2002). Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: A novel multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1–2), 137–149.

    Article  Google Scholar 

  • Fu, X., Wang, J., Zeng, S., Feng, X., Wang, D., & Song, C. (2017). Continental weathering and palaeoclimatic changes through the onset of the early Toarcian oceanic anoxic event in the Qiangtang Basin, eastern Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 241–250.

    Article  Google Scholar 

  • Gautam, S., Das, M., & Behera, B. (2018). Palynostratigraphy and palaeoenvironment of the Permian sediments in Mand Coalfield, Mahanadi Basin, Chhattisgarh India. Journal of Palaeosciences, 67(1–2), 185–200.

    Article  Google Scholar 

  • Gautam, S., Mendhe, V. A., Murthy, S., Mishra, D. P., & Mishra, V. K. (2022). Palynoassemblages and depositional environment of the subsurface Permian sediments in Raniganj coalfield, Damodar Basin, West Bengal. India. Journal of Earth System Science, 131(4), 224.

    Article  Google Scholar 

  • Ghosh, S., & Sarkar, S. (2010). Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: Clues for provenance. Chemical Geology, 277(1–2), 78–100.

    Article  CAS  Google Scholar 

  • Gogoi, M., Sarmah, R. K., Goswami, T. K., Mahanta, B. N., Laishram, R., Saikia, H., & Oza, B. (2021). Petrography, clay mineralogy and geochemistry of lower Gondwana sandstones of western Arunachal Pradesh Himalayas, India. Journal of Sedimentary Environments, 6, 561–583.

    Article  Google Scholar 

  • Goswami, S. (2002). Studies on Geology and Palaeontology of Gondwana Sequences in Ib River Coalfield, Orissa, India and their biostratigraphic significance, Ph.D. Thesis, Utkal University, Bhubaneswar, 1–282.

  • Goswami, S. (2006). Record of lower gondwana megafloral assemblage from lower kamthi formation of ib river Coalfield, Orissa, India. Journal of Biosciences, 31, 115–128.

    Article  Google Scholar 

  • Goswami, S. (2007). Palynological resolution of Permian sequence in Ib-River coalfield, Orissa and its environmental significance. Geological Society of India, 70(1), 131–142.

    Google Scholar 

  • Goswami, S. (2008). Marine influence and incursion in the Gondwana basins of Orissa, India: A review. Palaeoworld, 17(1), 21–32.

    Article  Google Scholar 

  • Goswami, S., & Jeet Singh, K. (2010). Occurrence of gymnosperms from the lower Gondwana formations of the Ib-river coalfield, Orissa, India with a clue on the palaeoecology and the palaeoenvironment of the area. Journal of the Palaeontological Society of India, 55(2), 121–135.

    Google Scholar 

  • Goswami, S., & Singh, K. J. (2013). Floral biodiversity and geology of the Talcher Basin, Orissa, India during the Permian-Triassic interval. Geological Journal, 48(1), 39–56.

    Article  Google Scholar 

  • Goswami, S., Dash, M., & Guru, B. C. (2006a). Permian biodiversity of Mahanadi master Basin, Orissa, India and their environmental countenance. Acta Palaeobotanica-Krakow., 46(2), 101–118.

    Google Scholar 

  • Goswami, S., Singh, K. J., & Chandra, S. (2006b). Pteridophytes from Lower Gondwana formations of the Ib river coalfield, Orissa and their diversity and distribution in the Permian of India. Journal of Asian Earth Sciences, 28(4–6), 234–250.

    Article  Google Scholar 

  • Goswami, S., Singh, K. J., & Chandra, S. (2006c). Palaeobotany of Gondwana basins of Orissa State, India: A bird’s eye view. Journal of Asian Earth Sciences, 28(4–6), 218–233.

    Article  Google Scholar 

  • Goswami, S., Dash, M., & Guru, B. C. (2010). Palaeoenvironment in the Mahanadi Basin: Inferences from Mesozoic plant and ichno fossils diversity. The Ecoscan, 4(1), 7–14.

    Google Scholar 

  • Goswami, S., Das, K., Sahoo, M., Bal, S., Pradhan, S., Singh, K. J., & Saxena, A. (2018a). Biostratigraphy and floristic evolution of coal swamp floras of a part of Talcher Basin, India: A window on a Permian temperate ecosystem. Arabian Journal of Geosciences, 11, 1–14.

    Article  Google Scholar 

  • Goswami, S., Saxena, A., Singh, K. J., Chandra, S., & Cleal, C. J. (2018b). An appraisal of the Permian palaeobiodiversity and geology of the Ib-River Basin, eastern coastal area, India. Journal of Asian Earth Sciences, 157, 283–301.

    Article  Google Scholar 

  • Goswami, S., Singh, K. J., Saxena, A., Wang, J., Chandra, S., & Gupta, S. (2022). Witnessing floral evolution: A case study from Barakar formation in Lajkura colliery, Ib-river coalfield, Mahanadi Basin India. Historical Biology, 34(1), 30–41.

    Article  Google Scholar 

  • Götz, A. E., & Ruckwied, K. (2014). Palynological records of the early Permian postglacial climate amelioration (Karoo Basin, South Africa). Palaeobiodiversity and Palaeoenvironments, 94(2), 229–235.

    Article  Google Scholar 

  • Gromet, L. P., Haskin, L. A., Korotev, R. L., & Dymek, R. F. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica Et Cosmochimica Acta, 48(12), 2469–2482.

    Article  CAS  Google Scholar 

  • Hunt, J. H. (1996). Petroleum geochemistry and geology. 2nd ed. Freeman and Company, New York. 743 P.

  • Jafarzadeh, M., Harami, R. M., Amini, A., Mahboubi, A., & Farzaneh, F. (2014). Geochemical constraints on the provenance of Oligocene-Miocene siliciclastic deposits (Zivah Formation) of NW Iran: Implications for the tectonic evolution of the Caucasus. Arabian Journal of Geosciences, 7, 4245–4263.

    Article  CAS  Google Scholar 

  • Jayaprakash, M., Nagarajan, R., Velmurugan, P. M., Sathiyamoorthy, J., Krishnamurthy, R. R., & Urban, B. (2012). Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India. Environmental Monitoring and Assessment, 184, 7407–7424.

    Article  CAS  Google Scholar 

  • Jha, N., Aggarwal, N., & Mishra, S. (2018). A review of the palynostratigraphy of Gondwana sediments from the Godavari Graben, India: Global comparison and correlation of the Permian-Triassic palynoflora. Journal of Asian Earth Sciences, 163, 1–21.

    Article  Google Scholar 

  • Jiang, J., Meng, B., Liu, H., Wang, H., Kolpakova, M., Krivonogov, S., & Liu, Z. (2021). Water depth control on n-alkane distribution and organic carbon isotope in mid-latitude Asian lakes. Chemical Geology, 565, 120070. https://doi.org/10.1016/j.chemgeo.2021.120070

    Article  CAS  Google Scholar 

  • Jian, X., Guan, P., Zhang, W., & Feng, F. (2013). Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chemical Geology, 360, 74–88.

    Article  Google Scholar 

  • Jones, B., & Manning, D. A. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129.

    Article  Google Scholar 

  • Kanhaiya, S., Singh, B. P., Singh, S., Mittal, P., & Srivastava, V. K. (2019). Morphometric analysis, bedload sediments, and weathering intensity in the Khurar River Basin, central India. Geological Journal, 54(1), 466–481.

    Article  Google Scholar 

  • Khanehbad, M., Moussavi-Harami, R., Mahboubi, A., & Nadjafi, M. (2012). Geochemistry of carboniferous shales of the Sardar Formation, east central Iran: Implication for provenance, paleoclimate and paleo-oxygenation conditions at a passive continental margin. Geochemistry International, 50, 777–790.

    Article  CAS  Google Scholar 

  • Kulkarni, S. (1969a). Studies in the Glossopteris and Gangamopteris species from South Karanpura coalfield. Journal of Palaeosciences, 18(1–3), 297–304.

    Article  Google Scholar 

  • Kulkarni, S. (1969b). Studies in the Glossopteris flora of India-40. Sphnopteris polymorpha Feistm. (1881) emend. from the Barakar stage of South Karanpura coalfield, Bihar. India. Palaeobotanist, 18, 208–211.

    Google Scholar 

  • Lele, K. M., & Srivastava, A. K. (1980). Lower Gondwana (Karharbari to Raniganj stage) miofloral assemblages from the Auranga coalfield and their stratigraphical significance. Lucknow, Proceedings, 2, 152–164.

    Google Scholar 

  • Lerman, A. D. I., & Gat, J. (1989). Physics and Chemistry of Lakes. Springer-Verlag.

    Google Scholar 

  • Li, X. H., Li, Z. X., Li, W. X., Liu, Y., Yuan, C., Wei, G., & Qi, C. (2007). U-Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1–2), 186–204.

    Article  CAS  Google Scholar 

  • Li, H., Zhang, H., Ling, M. X., Wang, F. Y., Ding, X., Zhou, J. B., & Sun, W. (2011). Geochemical and zircon U-Pb study of the Huangmeijian A-type granite: Implications for geological evolution of the Lower Yangtze River belt. International Geology Review, 53(5–6), 499–525.

    Article  Google Scholar 

  • López Laseras, P., Navarro, E., Marce Romero, R., Ordóñez Salinas, J., Caputo Galarce, L., & Armengol, J. (2006). Elemental ratios in sediments as indicators of ecological processes in Spanish reservoirs. Limnetica, 25(1–2), 499–512.

    Article  Google Scholar 

  • Mahanta, B. N., Sarmah, R. K., & Goswami, T. K. (2019). Elucidation of provenance, palaeoclimate and tectonic setting of the Gondwana sandstones of Arunachal Himalayas: A petrographic approach. Journal of the Geological Society of India, 94, 260–266.

    Article  CAS  Google Scholar 

  • Mahanta, B. N., Syngai, B. R., Sarmah, R. K., Goswami, T. K., Guha, S. K., & Kumar, A. (2017). Major oxide studies of lower Gondwana coals, West Siang District, Arunachal Pradesh, India: Analysis of palaeo environment and depositional milieu. Indian Journal of Geoscience, 71(2), 395–404.

    Google Scholar 

  • Maheshwari, H. K., & Prakash, G. (1964). Studies in the Glossopteris flora of India-21. Plant megafossils from the lower Gondwana exposures along Bansloi River in Rajmahal hills Bihar. Journal of Palaeosciences, 13(1–3), 115–128.

    Article  Google Scholar 

  • Maithy, P. K. (1971). The lower Gondwana plants of India and their stratigraphic significance. In Compte Rendu VII International Conference on Carboniferous Geology & Stratigraphy Krefeld, 3, 141–147.

    Google Scholar 

  • Maithy, P. K. (1972). Revision of the lower Gondwana Sphenopteris from India. Journal of Palaeosciences, 21(1–3), 70–80.

    Article  Google Scholar 

  • Mani, D., Ratnam, B., Kalpana, M. S., Patil, D. J., & Dayal, A. M. (2016). Elemental and organic geochemistry of Gondwana sediments from the Krishna-Godavari Basin. India. Geochemistry, 76(1), 117–131.

    Article  CAS  Google Scholar 

  • Mathews, R. P., Chetia, R., Agrawal, S., Singh, B. D., Singh, P. K., Singh, V. P., & Singh, A. (2020a). Early Palaeogene climate variability based on n-alkane and stable carbon isotopic composition evidenced from the Barsingsar lignite-bearing sequence of Rajasthan. Journal of the Geological Society of India, 95, 255–262.

    Article  CAS  Google Scholar 

  • Mathews, R. P., Pillai, S. S. K., Manoj, M. C., & Agrawal, S. (2020b). Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia coal mine (Rajmahal Basin), Jharkhand, India: A multi-proxy approach. International Journal of Coal Geology, 224, 103–485.

    Article  Google Scholar 

  • Mathews, R. P., Singh, B. D., Singh, V. P., Singh, A., Singh, H., Shivanna, M., & Chetia, R. (2020c). Organo-petrographic and geochemical characteristics of Gurha lignite deposits, Rajasthan, India: Insights into the palaeovegetation, palaeoenvironment and hydrocarbon source rock potential. Geoscience Frontiers, 11(3), 965–988.

    Article  CAS  Google Scholar 

  • McLennan, S. M. (1993). Weathering and global denudation. The Journal of Geology, 101(2), 295–303.

    Article  Google Scholar 

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems2(4).

  • Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian great Lakes. Organic Geochemistry, 34(2), 261–289.

    Article  CAS  Google Scholar 

  • Mohialdeen, I. M., & Raza, S. M. (2013). Inorganic geochemical evidence for the depositional facies associations of the upper Jurassic chia Gara formation in NE Iraq. Arabian Journal of Geosciences, 6, 4755–4770.

    Article  CAS  Google Scholar 

  • Mongenot, T., Tribovillard, N. P., Desprairies, A., Lallier-Vergès, E., & Laggoun-Defarge, F. (1996). Trace elements as palaeoenvironmental markers in strongly mature hydrocarbon source rocks: The Cretaceous La Luna formation of Venezuela. Sedimentary Geology, 103(1–2), 23–37.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M., & Parui, P. K. (2010). Stratigraphic correlation between different Gondwana basins of India. Journal of the Geological Society of India, 76, 251–266.

    Article  Google Scholar 

  • Murphy, M. A., & Salvador, A. (1999). International stratigraphic guide—An abridged version. Episodes Journal of International Geoscience, 22(4), 255–271.

    Google Scholar 

  • Murthy, S., Chakraborti, B., & Roy, M. D. (2010). Palynodating of subsurface sediments, Raniganj coalfield, Damodar Basin, West Bengal. Journal of Earth System Science, 119, 701–710.

    Article  Google Scholar 

  • Murthy, S., Tripathi, A., Chakraborti, B., & Singh, U. P. (2014). Palynostratigraphy of Permian succession from Binja block, South Karanpura coalfield, Jharkhand, India. Journal of Earth System Science, 123, 1895–1906.

    Article  CAS  Google Scholar 

  • Murthy, S., Mahesh, S., & Roy, J. S. (2016). Palyno-petrographical facet and depositional account of Gondwana sediments from East Bokaro coalfield, Jharkhand. Journal of the Geological Society of India, 88, 549–558.

    Article  CAS  Google Scholar 

  • Murthy, S., Mendhe, V. A., Uhl, D., Mathews, R. P., Mishra, V. K., & Gautam, S. (2021). Palaeobotanical and biomarker evidence for early Permian (Artinskian) wildfire in the Rajmahal Basin. India. Journal of Palaeogeography, 10(1), 1–21.

    Google Scholar 

  • Nesbitt, H., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717.

    Article  CAS  Google Scholar 

  • Novíkov, A. & Barabaš-Krasni, B. (2015). Modern plant systematics. Lviv, Ukraine: Liga-Press.

  • Paikaray, S., Banerjee, S., & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32(1), 34–48.

    Article  Google Scholar 

  • Patel, R., Goswami, S., Sahoo, M., Pillai, S. S. K., Aggarwal, N., Mathews, R. P., Swain, R. R., Saxena, A., & Singh, K. J. (2021). Biodiversity of a Permian temperate forest: A case study from Ustali area, Ib River Basin, Odisha India. Geological Journal, 56(2), 903–933.

    Article  Google Scholar 

  • Patel, R., Goswami, S., Aggarwal, N., & Mathews, R. P. (2022a). Lower Gondwana megaflora, palynoflora, and biomarkers from Jagannath colliery, Talcher Basin, Odisha, India, and its biostratigraphic significance. Geological Journal, 57(3), 986–1004.

    Article  Google Scholar 

  • Patel, R., Goswami, S., Aggarwal, N., & Mathews, R. P. (2022b). Palaeofloristics of lower Gondwana exposure in Hingula area, Talcher Basin, Odisha, India: An inclusive study on biomarkers, megafloral and palynofloral assemblages. Historical Biology, 34(9), 1877–1893.

    Article  Google Scholar 

  • Patra, B. P., & Swain, S. C. (1991). On the occurrence of Rhipidopsis gondwanensis (Feistm.) Seward in Hingula Temple Nala near Gopal Prasad, District Dhenkanal, Orissa Shilalekha. Research Bulletin, Post Graduate Department of Geology, Utkal University, Bhubaneswar, 1, 24–26.

    Google Scholar 

  • Patra, S., Dirghangi, S. S., Rudra, A., Dutta, S., Ghosh, S., Varma, A. K., & Kalpana, M. S. (2018). Effects of thermal maturity on biomarker distributions in Gondwana coals from the Satpura and Damodar Valley Basins, India. International Journal of Coal Geology, 196, 63–81.

    Article  CAS  Google Scholar 

  • Pillai, S. S. K., Mathews, R. P., Murthy, S., Goswami, S., Agrawal, S., Sahoo, M., & Singh, R. K. (2020). Palaeofloral investigation based on morphotaxonomy, palynomorphs, biomarkers and stable isotope from Lalmatia coal mine of Rajmahal Lower Gondwana Basin, Godda District, Jharkhand: An inclusive empirical study. Journal of the Geological Society of India, 96, 43–57.

    Article  CAS  Google Scholar 

  • Pillai, S. S. K., Manoj, M. C., Mathews, R. P., Murthy, S., Sahoo, M., Saxena, A., ... & Kumar, S. (2023). Lower Permian Gondwana sequence of Rajhara (Daltonganj Coalfield), Damodar Basin, India: Floristic and geochemical records and their implications on marine ingressions and depositional environment. Environmental Geochemistry and Health, 1–31.

  • Powell, T. G. (1988). Pristane/phytane ratio as environmental indicator. Nature, 333(6174), 604–604.

    Article  Google Scholar 

  • Pradhan, S., Goswami, S., Pradhan, S. S., & Das, S. B. (2022). A study on morphotaxonomy and distribution of glossopterid scale leaves from the Barakar formation, South Karanpura Coalfield, Jharkhand, India. Journal of Palaeontological Society of India, 67(2), 349–356.

    Google Scholar 

  • Pradhan, S., Goswami, S., Pradhan, S. S. & Das, S. B. (2023). Floral diversity of South Karanpura Basin, Jharkhand, India and their Palaeoclimatic implication with special reference to Palaeoenvironment. Journal of Geological Society of India. 99.

  • Prasad, B. I. J. A. I., & Pundir, B. S. (1999). Biostratigraphy of the exposed Gondwana and Cretaceous rocks of Krishna-Godavari basin, India. Journal of Palaeontological Society of India, 44, 91–117.

    Google Scholar 

  • Prasad, B., & Pundir, B. S. (2017). Gondwana biostratigraphy of the Purnea Basin (eastern Bihar, India), and its correlation with Rajmahal and Bengal Gondwana basins. Journal of the Geological Society of India, 90, 405–427.

    Article  CAS  Google Scholar 

  • Raja Rao, C. S. (1987). Coal resources of Bihar (excluding Dhanbad District). Bulletin of Geological Survey of India, Series, 45, 300–322.

    Google Scholar 

  • Ram-Awatar Mukhopadhyay, A., & Adhikari, S. (2004). Palynostratigraphy of sub-surface Lower Gondwana, Pali sediments, Sohagpur Coalfield, MP India. Journal of Palaeosciences, 53(1–3), 51–59.

    Article  Google Scholar 

  • Rao, Z., Zhu, Z., Wang, S., Jia, G., Qiang, M., & Wu, Y. (2009). CPI values of terrestrial higher plant-derived long-chain n-alkanes: A potential paleoclimatic proxy. Frontiers of Earth Science in China, 3, 266–272.

    Article  CAS  Google Scholar 

  • Rieu, R., Allen, P. A., Plötze, M., & Pettke, T. (2007). Climatic cycles during a neoproterozoic “snowball” glacial epoch. Geology, 35(4), 299–302.

    Article  CAS  Google Scholar 

  • Roy, D. K., & Roser, B. P. (2013). Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin. Bangladesh. Gondwana Research, 23(3), 1163–1171.

    Article  CAS  Google Scholar 

  • Ruckwied, K., Götz, A. E., & Jones, P. (2014). Palynological records of the Permian Ecca group (South Africa): Utilizing climatic icehouse–greenhouse signals for cross basin correlations. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 167–172.

    Article  Google Scholar 

  • Sahoo, M., Aggarwal, N., & Goswami, S. (2020a). Palynological investigation of the Lower Gondwana outcrop near Gopalprasad, Odisha, India: An inference on the age, palaeovegetation and palaeoclimate. Journal of the Geological Society of India, 65(1), 27–35.

    Google Scholar 

  • Sahoo, M., Goswami, S., Aggarwal, N., & Pillai, S. S. K. (2020b). Palaeofloristics of lower Gondwana exposure near Kumunda village, Angul District, Talcher Basin, Odisha, India: A comprehensive study on megafloral and palynofloral assemblages. Journal of the Geological Society of India, 95, 241–254.

    Article  CAS  Google Scholar 

  • Sarki Yandoka, B. M., Abdullah, W. H., Abubakar, M. B., Hakimi, M. H., & Adegoke, A. K. (2015). Geochemical characterisation of early cretaceous lacustrine sediments of Bima formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Organic matter input, preservation, paleoenvironment and palaeoclimatic conditions. Marine and Petroleum Geology, 61, 82–94.

    Article  CAS  Google Scholar 

  • Scott, L. (1982). Pollen analyses of Late Cainozoic deposits in the Transvaal, South Africa, and their bearing on palaeoclimates. In: Proceedings of 6th Biennial Conference, Southern African Society for Quaternary research, South Africa, 101–107.

  • Sen, S., & Dey, J. (2019). A field-scale overview of facies architectures and depositional environment integrating core and geophysical log data: Study from a marginal Gondwana Basin, India. Journal of the Geological Society of India, 94, 238–244.

    Article  Google Scholar 

  • Shadan, M., & Hosseini-Barzi, M. (2013). Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: Implications for provenance and tectonic setting in the southern part of the Tabas block. Revista Mexicana De Ciencias Geológicas, 30(1), 80–95.

    Google Scholar 

  • Shi, X., Ng, K. K., Li, X. R., & Ng, H. Y. (2015). Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment. Environmental Science & Technology, 49(10), 6231–6239.

    Article  CAS  Google Scholar 

  • Shi, G., Song, G., Wang, H., Huang, C., Zhang, L., & Tang, J. (2016a). Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry. Journal of Asian Earth Sciences, 127, 100–118.

    Article  Google Scholar 

  • Shi, X., Yao, Z., Liu, Q., Larrasoaña, J. C., Bai, Y., Liu, Y., & Xu, T. (2016b). Sedimentary architecture of the Bohai Sea China over the last 1 Ma and implications for sea-level changes. Earth and Planetary Science Letters, 451, 10–21.

    Article  CAS  Google Scholar 

  • Singh, S. M. (2002). Seeds, fructifications, bracts and calamitalean axes from the Karanpura and Bokaro group of coalfields. Palaeobotanist, 51(1–3), 73–79.

    Google Scholar 

  • Singh, A. K., & Jha, M. K. (2018). Hydrocarbon potential of permian coals of south Karanpura coalfield, Jharkhand, India. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 40(2), 163–171.

    Article  CAS  Google Scholar 

  • Singh, S. M., & Maheshwari, H. K. (2000). On the species of genus glossopteris from Barakar formation of Karanpura and Bokaro coalfields, India. Palaeobotanist, 49, 409–441.

    Google Scholar 

  • Singh, S. M., & Singh, H. B. (2002). A Study on Palaeobotany of Karanpura and Bokaro coalfields. Bharatiya Vaigyanik Evam Audyogik Anusandhan Patrika (BVAAP), 10(1), 21–30.

    Google Scholar 

  • Singh, K. J., Chandra, A., & Chandra, S. (2005). Evaluation of earliest Permian flora of India and its equivalents in other Gondwana continents. Journal of Palaeosciences, 54(1–3), 107–113.

    Article  Google Scholar 

  • Singh, K. J., Goswami, S., & Chandra, S. (2006a). The Genus Glossopteris from Lower Gondwana Formations of Ib River Coalfield, Orissa, India. Journal of Palaeontological Society of India, 51, 81–107.

    Google Scholar 

  • Singh, K. J., Goswami, S., & Chandra, S. (2006b). First report of genus Gangamopteris from Gondwana sediments of Ib-river coalfield. Orissa. Geological Society of India, 68(5), 893–905.

    Google Scholar 

  • Singh, K. J., Goswami, S., & Chandra, S. (2006c). Megafloral assemblage similar to Karharbari biozone from Talchir coalfield of Mahanadi Basin. Orissa. Geological Society of India, 68(2), 277–287.

    Google Scholar 

  • Singh, K. J., Goswami, S., & Chandra, S. (2007). Occurrence of cordaitales from lower gondwana sediments of Ib-River Coalfield, Orissa, India: An Indian scenario. Journal of Asian Earth Sciences, 29(5–6), 666–684.

    Article  Google Scholar 

  • Singh, K. J., Chandra, S., & Saxena, A. (2011). Tatapania gen. nov., a possible cone of Schizoneura gondwanensis Feistmantel from the Late Permian in the Tatapani-Ramkola Coalfield. India. Journal of Palaeosciences, 60(1–2), 251–263.

    Article  Google Scholar 

  • Singh, K. J., Murthy, S., Saxena, A., & Shabbar, H. (2017). Permian macro-and miofloral diversity, palynodating and palaeoclimate implications deduced from the coal-bearing sequences of Singrauli coalfield, Son-Mahanadi Basin, central India. Journal of Earth System Science, 126, 1–16.

    Article  Google Scholar 

  • Singh, A. K., Kumar, A., & Hakimi, M. H. (2018). Organic geochemical and petrographical characteristics of the Nagaur lignites, Western Rajasthan, India and their relevance to liquid hydrocarbon generation. Arabian Journal of Geosciences, 11, 1–15.

    Article  Google Scholar 

  • Srivastava, A. K. (1977a). Stratigraphical bearing of megaflora in the Lower Gondwana succession of Auranga Coalfield. Bihar. Journal of Palaeosciences, 26(1–3), 214–220.

    Google Scholar 

  • Srivastava, A. K. (1977b). Studies in the Glossopteris flora of India-44 Raniganj plant Megafossils and Microspores from Auranga Coalfield Bihar. Journal of Palaeosciences, 26(1–3), 72–94.

    Article  Google Scholar 

  • Srivastava, A. K. (1992). Plant fossil assemblages from the Barakar Formation of Raniganj Coalfield India. Journal of Palaeosciences, 39(1–3), 281–302.

    Google Scholar 

  • Srivastava, A. K., Randive, K. R., & Khare, N. (2013). Mineralogical and geochemical studies of glacial sediments from Schirmacher Oasis, East Antarctica. Quaternary International, 292, 205–216.

    Article  Google Scholar 

  • Srivastava, A. K., & Tewari, R. (1996). Plant fossils from the Barakar Formation, Auranga Coalfield. Bihar. Geophytology, 26(1), 83–88.

    Google Scholar 

  • Srivastava, S. C., & Kar, R. (2001). Palynological dating of some Permian outcrops from Iria Valley, Tatapani-Ramkola Coalfield, MP, India. In: Proceedings of National Seminar on Recent Advances in Geology of Coal and Lignite Basins of India, Calcutta, Geological Survey of India Special Publication (Vol. 54, pp. 97–102). https://doi.org/10.1007/s10653-023-01701-w

  • Swain, R. R., Patel, R., Sahoo, M., Kishan, A. C., & Goswami, S. (2020). Megafloristics of fossiliferous beds from Chaurimal Stone Quarry, Ib River Coalfield, Odisha, India and their biostratigraphic implications. Himalayan Geology, 41(1), 39–50.

    Google Scholar 

  • Taylor, S. R. & McLennan, S. M. (1985). The continental crust: Its composition and evolution. United States

  • Tewari, R., & Srivastava, A. K. (2000). Plant fossils from Bhareli Formation of Arunachal Pradesh, North-East Himalaya India. Journal of Palaeosciences, 49(1–3), 209–218.

    Article  Google Scholar 

  • Tewari, A., Dutta, S., & Sarkar, T. (2017). Biomarker signatures of Permian Gondwana coals from India and their palaeobotanical significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 468, 414–426.

    Article  Google Scholar 

  • Tissot, B., Pelet, R., Roucache, J., & Combaz, A. (1975). Alkanes as geochemical fossils indicators of geological environments. Advances in Organic Geochemistry, 117–154

  • Tiwari, R. S., & Tripathi, A. (1987). Palynological zones and their climatic inference in the coal-bearing Gondwana of peninsular India. The Palaeobotanist, 36, 87–101.

    Google Scholar 

  • Tiwari, R. S., & Tripathi, A. (1992). Marker assemblage·zones of spores and pollen species through Gondwana Palaeozoic and Mesozoic sequence in India. Palaeobotanist, 40, 194–236.

    Google Scholar 

  • Tripathi, A., Vijaya Murthy, S., Chakarborty, B., & Das, D. K. (2012). Stratigraphic status of coal horizon in Tatapani-Ramkola CoalBeld, Chhattisgarh. India. Journal of Earth System Sciences, 121(2), 537–557.

    Article  Google Scholar 

  • Tripathy, G., Goswami, S., & Patel, R. (2019). An exclusive Schizoneura forest: An emblematic late permian marsh ecosystem. Journal of Geological Society, 94(5), 485–492.

    Google Scholar 

  • Tripathy, G., Goswami, S., & Das, P. P. (2021). Late Permian species diversity of the genus Glossopteris in and around Himgir, Ib River Basin, Odisha, India, with a clue on palaeoclimate and palaeoenvironment. Arabian Journal of Geosciences, 4(8), 1–22.

    Google Scholar 

  • Turland, N. J., Wiersema, J. H., Barrie, F.R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W. H., Li, D. Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J. & Smith G. F. (2018). (Eds.) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159 (Glashütten: Koeltz Botanical Books). https://doi.org/10.12705/Code.2018

  • Venkatachala, B. S., & Kar, R. K. (1967). Palynology of the North Karanpura Basin, Bihar, India-2 Barakar Exposures near Lungatoo Hazaribagh District. Journal of Palaeosciences, 16(1–3), 258–269.

    Article  Google Scholar 

  • Wang, L., Wang, C., Li, Y., Zhu, L., & Wei, Y. (2011). Sedimentary and organic geochemical investigation of tertiary lacustrine oil shale in the central Tibetan plateau: Palaeolimnological and palaeoclimatic significances. International Journal of Coal Geology, 86(2–3), 254–265.

    Article  CAS  Google Scholar 

  • Wang, M. F., Jiao, Y. Q., Wang, Z. H., Yang, Q., & Yang, S. K. (2005). Recovery paleosalinity in sedimentary environment—An example of mudstone in Shuixigou group, southwestern margin of Turpan-Hami basin, Xin Jiang. Petroleum Geology, 12, 719–722. (in Chinese with English abstract).

    Google Scholar 

  • Wang, W., & Zhou, M. F. (2013). Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of the Neoproterozoic sedimentary basin in the eastern Jiangnan Orogen, South China. Journal of Sedimentary Research, 83(11), 975–994.

    Article  CAS  Google Scholar 

  • Xiong, X. H., & Xiao, J. F. (2011). Geochemical indicators of sedimentary environments-a summary. Earth and Environment, 39(3), 405–414.

    CAS  Google Scholar 

  • Xu, W., & Liu, F. (2019). Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth-Science Reviews, 193, 162–198.

    Article  CAS  Google Scholar 

  • Xu, Z., Wang, Y., Jiang, S., Fang, C., Liu, L., Wu, K., & Chen, Y. (2022). Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: A case study of lacustrine shale in Dehui Depression of Songliao Basin. NE China. Marine and Petroleum Geology, 135, 105386.

    Article  CAS  Google Scholar 

  • Yang, R., Yang, Y., Fang, X., Ruan, X., Galy, A., Ye, C., & Han, W. (2019). Late Miocene intensified tectonic uplift and climatic aridification on the northeastern Tibetan Plateau: Evidence from clay mineralogical and geochemical records in the Xining Basin. Geochemistry, Geophysics, Geosystems, 20(2), 829–851.

    Article  CAS  Google Scholar 

  • Zaid, S. M. (2013). Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez. Egypt. Journal of African Earth Sciences, 85, 31–52.

    Article  Google Scholar 

  • Zaid, S. M. (2015). Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102, 1–17.

    Article  CAS  Google Scholar 

  • Zhang, K. J., Li, B., Wei, Q. G., Cai, J. X., & Zhang, Y. X. (2008). Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, eastern Tibetan plateau): Implications for the tectonic amalgamation of China. Sedimentary Geology, 208(1–2), 36–44.

    Article  Google Scholar 

  • Zhang, K. J., Zhang, Y. X., Xia, B. D., & He, Y. B. (2006). Temporal variations of Mesozoic sandstone compositions in the Qiangtang block, northern Tibet (China): Implications for provenance and tectonic setting. Journal of Sedimentary Research, 76(8), 1035–1048.

    Article  CAS  Google Scholar 

  • Zhao, M. Y., & Zheng, Y. F. (2015). The intensity of chemical weathering: Geochemical constraints from marine detrital sediments of Triassic age in South China. Chemical Geology, 391, 111–122.

    Article  CAS  Google Scholar 

  • Zhu, X., Li, S., Wu, D., Zhu, S., Dong, Y., Zhao, D., & Zhang, Q. (2017). Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar basin, Western China. Journal of Petroleum Science and Engineering, 149, 591–602.

    Article  CAS  Google Scholar 

  • Životić, D., Wehner, H., Cvetković, O., Jovančićević, B., Gržetić, I., Scheeder, G., & Simić, V. (2008). Petrological, organic geochemical and geochemical characteristics of coal from the Soko mine Serbia. International Journal of Coal Geology, 73(3–4), 285–306.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vice Chancellor, Sambalpur University, Jyoti Vihar and Director, Birbal Sahni Institute of Palaeosciences, Lucknow for providing necessary research facilities. We also thank the Director, Central Coalfield Limited, for permission to collect samples. First author (SP) is grateful to DST, Government of India for the research grant (DST/INSPIRE Fellowship/2016/IF160518).

Funding

The author (SP) received the research grant (IF200461) from Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SP and SG conceived and designed the paper. SP and SG wrote the paper. NA did palynofossils identification, photograph documentation, and result interpretation. RPM did organic geochemical analysis and MMC did inorganic geochemical analysis. SSKP supported during sample processing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shreerup Goswami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S., Goswami, S., Aggarwal, N. et al. Integrative study of Permian coal-bearing horizons: biostratigraphy, palaeovegetation, and palaeoclimate in the South Karanpura Basin. Environ Geochem Health 45, 6985–7010 (2023). https://doi.org/10.1007/s10653-023-01701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01701-w

Keywords

Navigation