Skip to main content
Log in

Pollution characteristics, associated risks, and possible sources of heavy metals in road dust collected from different areas of a metropolis in Vietnam

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)—the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi, S., Keshavarzi, B., Moore, F., & Mahmoudi, M. R. (2018). Fractionation, source identification and risk assessment of potentially toxic elements in street dust of the most important center for petrochemical products, Asaluyeh County Iran. Environmental Earth Sciences, 77, 1–19. https://doi.org/10.1007/s12665-018-7854-z

    Article  CAS  Google Scholar 

  • Adamiec, E., Jarosz-Krzemińska, E., & Wieszała, R. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental Monitoring and Assessment, 188, 369. https://doi.org/10.1007/s10661-016-5377-1

    Article  CAS  Google Scholar 

  • Adewumi, A. J. (2022). Heavy metals in soils and road dust in Akure City, Southwest Nigeria: Pollution, sources, and ecological and health risks. Exposure and Health, 14, 375–392. https://doi.org/10.1007/s12403-021-00456-y

    Article  CAS  Google Scholar 

  • Adomako, E. E., Deacon, C., & Meharg, A. A. (2010). Variations in concentrations of arsenic and other potentially toxic elements in mine and paddy soils and irrigation waters from Southern Ghana. Water Quality, Exposure and Health, 2(2), 115–124. https://doi.org/10.1007/s12403-010-0029-0

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2022). Substance priority list. U.S. Department of Health and Human Services. Retrieved March 14, 2023, from https://www.atsdr.cdc.gov/spl/index.html#2022spl

  • Alsbou, E. M. E., & Al-Khashman, O. A. (2018). Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environmental Monitoring and Assessment, 190, 48. https://doi.org/10.1007/s10661-017-6409-1

    Article  CAS  Google Scholar 

  • Al-Shidi, H. K., Al-Reasi, H. A., & Sulaiman, H. (2022). Heavy metals levels in road dust from Muscat, Oman: Relationship with traffic volumes, and ecological and health risk assessments. International Journal of Environmental Health Research, 32, 264–276. https://doi.org/10.1080/09603123.2020.1751806

    Article  Google Scholar 

  • Bartholomew, C. J., Li, N., Li, Y., Dai, W., Nibagwire, D., & Guo, T. (2019). Characteristics and health risk assessment of heavy metals in street dust for children in Jinhua, China. Environmental Science and Pollution Research, 27, 5042–5055. https://doi.org/10.1007/s11356-019-07144-0

    Article  CAS  Google Scholar 

  • Boreddy, S. K. R., Hegde, P., & Aswini, A. R. (2021). Geochemical characteristics of trace elements in size-resolved coastal urban aerosols associated with distinct air masses over tropical peninsular India: Size distributions and source apportionment. Science of The Total Environment, 763, 142967. https://doi.org/10.1016/j.scitotenv.2020.142967

    Article  CAS  Google Scholar 

  • Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2016). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environmental Geochemistry and Health, 39(3), 611–634. https://doi.org/10.1007/s10653-016-9836-y

    Article  CAS  Google Scholar 

  • Cesari, D., Amato, F., Pandolfi, M., Alastuey, A., Querol, X., & Contini, D. (2016). An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environmental Science and Pollution Research, 23(15), 15133–15148. https://doi.org/10.1007/s11356-016-6599-z

    Article  CAS  Google Scholar 

  • CNEMC. (1990). China National Environmental Monitoring Center. The Backgrounds of Soil Environment in China. Environment Science Press of China.

  • Cui, Y., Bai, L., Li, C., He, Z., & Liu, X. (2022). Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region. Sustainable Cities and Society, 80, 103796. https://doi.org/10.1016/j.scs.2022.103796

    Article  Google Scholar 

  • Dahari, N., Muda, K., Khan, M. F., Latif, Mohd. T., Hussein, N., & Dominick, D. (2022). Chemical characterization and source apportionment of PM2.5 near semi-urban residential-industrial areas. Exposure and Health, 14, 149–170. https://doi.org/10.1007/s12403-021-00425-5

    Article  CAS  Google Scholar 

  • Das, S., & Chellam, S. (2020). Estimating light-duty vehicles’ contributions to ambient PM2.5 and PM10 at a near-highway urban elementary school via elemental characterization emphasizing rhodium, palladium, and platinum. Science of the Total Environment, 747, 141268. https://doi.org/10.1016/j.scitotenv.2020.141268

    Article  CAS  Google Scholar 

  • Dat, N. D., Chau, V. N. M., & Tran, A. T. K. (2023b). Temporal and spatial distribution of disinfection byproducts in drinking water supplied to the Mega City of Vietnam and assessment of the associated risks. Exposure and Health. https://doi.org/10.1007/s12403-023-00542-3

    Article  Google Scholar 

  • Dat, N. D., Nguyen, V.-T., Vo, T.-D.-H., Bui, X.-T., Bui, M.-H., Nguyen, L. S. P., Nguyen, X.-C., Tran, A.T.-K., Nguyen, T.-T.-A., Ju, Y.-R., Huynh, T.-M.-T., Nguyen, D.-H., Bui, H.-N., & Lin, C. (2021). Contamination, source attribution, and potential health risks of heavy metals in street dust of a metropolitan area in Southern Vietnam. Environmental Science and Pollution Research, 28, 50405–50419. https://doi.org/10.1007/s11356-021-14246-1

    Article  CAS  Google Scholar 

  • Dat, N. D., Thuan, N. T., Hoang, N.T.-T., Tran, H. N., Hien, T. T., Tran, K. T., & Chang, M. B. (2022). Characteristics of polycyclic aromatic hydrocarbons in ambient air of a tropical mega-area, Ho Chi Minh City, Vietnam: Concentration, distribution, gas/particle partitioning, potential sources and cancer risk assessment. Environmental Science and Pollution Research, 29, 44054–44066. https://doi.org/10.1007/s11356-022-18859-y

    Article  CAS  Google Scholar 

  • Dat, N. D., Truong, M. T., Nguyen, L. S. P., Kim Tran, A. T., Duc, N. M., Vo, T.-D.-H., & Sheu, G.-R. (2023a). Street dust mercury levels among different land-use categories in Ho Chi Minh city, Vietnam: Source apportionment and risk estimation. Atmospheric Pollution Research, 14, 101623. https://doi.org/10.1016/j.apr.2022.101623

    Article  CAS  Google Scholar 

  • Dehghani, S., Moore, F., Keshavarzi, B., & Hale, B. A. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran. Iran. Ecotoxicology and Environmental Safety, 136, 92–103. https://doi.org/10.1016/j.ecoenv.2016.10.037

    Article  CAS  Google Scholar 

  • Duong, T. T. T., & Lee, B. K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92, 554–562. https://doi.org/10.1016/j.jenvman.2010.09.010

    Article  CAS  Google Scholar 

  • Dytłow, S., & Górka-Kostrubiec, B. (2020). Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environmental Geochemistry and Health, 43(1), 521–535. https://doi.org/10.1007/s10653-020-00726-9

    Article  CAS  Google Scholar 

  • Fan, P., Lu, X., Yu, B., Fan, X., Wang, L., Lei, K., Yang, Y., Zuo, L., & Rinklebe, J. (2022). Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust. Environment International, 160, 107073. https://doi.org/10.1016/j.envint.2021.107073

    Article  CAS  Google Scholar 

  • Fan, X., Lu, X., Yu, B., Zuo, L., Fan, P., Yang, Y., Zhuang, S., Liu, H., & Qin, Q. (2021). Risk and sources of heavy metals and metalloids in dust from university campuses: A case study of Xi’an, China. Environmental Research, 202, 111703. https://doi.org/10.1016/j.envres.2021.111703

    Article  CAS  Google Scholar 

  • Fei, X., Lou, Z., Xiao, R., Lv, X., & Christakos, G. (2022). Contamination and health risk assessment of heavy metal pollution in soils developed from different soil parent materials. Exposure and Health. https://doi.org/10.1007/s12403-022-00498-w

    Article  Google Scholar 

  • Ghanavati, N., Nazarpour, A., & De Vivo, B. (2019). Ecological and human health risk assessment of toxic metals in street dusts and surface soils in Ahvaz, Iran. Environmental Geochemistry and Health, 41, 875–891. https://doi.org/10.1007/s10653-018-0184-y

    Article  CAS  Google Scholar 

  • Hankanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 8, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Heidari, M., Darijani, T., & Alipour, V. (2021). Heavy metal pollution of road dust in a city and its highly polluted suburb; Quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere, 273, 129656. https://doi.org/10.1016/j.chemosphere.2021.129656

    Article  CAS  Google Scholar 

  • Hini, G., Eziz, M., Wang, W., Ili, A., & Li, X. (2019). Spatial distribution, contamination levels, sources, and potential health risk assessment of trace elements in street dusts of Urumqi city, NW China. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2019.1651629

    Article  Google Scholar 

  • Hoi, H. T. (2020). Impacts of urbanization on the environment of Ho Chi Minh City. In IOP conference series: Earth and environmental science (Vol. 505, p. 012035).

  • Huang, C., Zhang, L., Meng, J., Yu, Y., Qi, J., Shen, P., Li, X., Ding, P., Chen, M., & Hu, G. (2022). Characteristics, source apportionment and health risk assessment of heavy metals in urban road dust of the Pearl River Delta, South China. Ecotoxicology and Environmental Safety, 236, 113490. https://doi.org/10.1016/j.ecoenv.2022.113490

    Article  CAS  Google Scholar 

  • Hulskotte, J. H. J., Roskam, G. D., & Denier, H. A. C. (2014). Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric Environment, 99, 436–445. https://doi.org/10.1016/j.atmosenv.2014.10.007

    Article  CAS  Google Scholar 

  • Hung, T. T., Tu, T. A., Huyen, D. T., & Desmet, M. (2019). Presence of trace elements in sediment of Can Gio mangrove forest, Ho Chi Minh city, Vietnam. Journal of Earth Sciences, 41(1), 21–35. https://doi.org/10.15625/0866-7187/41/1/13543

    Article  Google Scholar 

  • IARC. (2014). Agents classified by the international agency for research on cancer monographs (pp. 1–109)

  • Idris, A. M., Alqahtani, F. M. S., Said, T. O., & Fawy, K. F. (2020). Contamination level and risk assessment of heavy metal deposited in street dusts in Khamees-Mushait city, Saudi Arabia. Human and Ecological Risk Assessment: An International Journal, 26, 495–511. https://doi.org/10.1080/10807039.2018.1520596

    Article  CAS  Google Scholar 

  • Jayarathne, A., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2018). Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Science of the Total Environment, 635, 1609–1619. https://doi.org/10.1016/j.scitotenv.2018.04.098

    Article  CAS  Google Scholar 

  • Kabadayi, F., & Cesur, H. (2010). Determination of Cu, Pb, Zn, Ni Co, Cd, and Mn in road dusts of Samsun City. Environmental Monitoring and Assessment, 168, 241–253. https://doi.org/10.1007/s10661-009-1108-1

    Article  CAS  Google Scholar 

  • Kengnal, P., Megeri, M., Giriyappanavar, B., & Patil, R. R. (2015). Multivariate analysis for the water quality assessment in rural and urban vicinity of Krishna River (India). Asian Journal of Water, Environment and Pollution, 12, 73–80.

    CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination: A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Krupnova, T. G., Rakova, O. V., Gavrilkina, S. V., Antoshkina, E. G., Baranov, E. O., & Yakimova, O. N. (2020). Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere, 261, 127799. https://doi.org/10.1016/j.chemosphere.2020.127799

    Article  CAS  Google Scholar 

  • Kyllönen, K., Vestenius, M., Anttila, P., Makkonen, U., Aurela, M., Wängberg, I., Nerentorp Mastromonaco, M., & Hakola, H. (2020). Trends and source apportionment of atmospheric heavy metals at a subarctic site during 1996–2018. Atmospheric Environment, 236. https://doi.org/10.1016/j.atmosenv.2020.117644

  • Li, F., Yang, H., Ayyamperumal, R., & Liu, Y. (2022). Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere, 308, 136396. https://doi.org/10.1016/j.chemosphere.2022.136396

    Article  CAS  Google Scholar 

  • Li, X., Ullah, H., Sun, X., Yan, X., Dong, J., Gao, Y., Cao, Y., Li, T., & Yu, H. (2021). Potentially Toxic Metals (PTMs) in soil-dust-plant total environment and associated exposure risks for children (0–6) based on site-specific blood lead levels: A comprehensive investigation for the City of Lanzhou in Northwest China. Exposure and Health, 14, 557–580. https://doi.org/10.1007/s12403-021-00435-3

    Article  CAS  Google Scholar 

  • Li, Y., Li, P., & Liu, L. (2022b). Source identification and potential ecological risk assessment of heavy metals in the topsoil of the weining plain (Northwest China). Exposure and Health, 14, 281–294. https://doi.org/10.1007/s12403-021-00438-0

    Article  CAS  Google Scholar 

  • Lima, L. H. V., Nascimento, C. W. A., Silva, F. B. V., & Araújo, P. R. M. (2023). Baseline concentrations, source apportionment, and probabilistic risk assessment of heavy metals in urban street dust in Northeast Brazil. Science of The Total Environment, 858, 159750. https://doi.org/10.1016/j.scitotenv.2022.159750

    Article  CAS  Google Scholar 

  • Long, Z., Zhu, H., Bing, H., Tian, X., Wang, Z., Wang, X., & Wu, Y. (2021). Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. Journal of Hazardous Materials, 420, 126638. https://doi.org/10.1016/j.jhazmat.2021.126638

    Article  CAS  Google Scholar 

  • Makokha, V. A., Qi, Y., Shen, Y., & Wang, J. (2015). Concentrations, distribution, and ecological risk assessment of heavy metals in the East Dongting and Honghu Lake, China. Exposure and Health, 8(1), 31–41. https://doi.org/10.1007/s12403-015-0180-8

    Article  CAS  Google Scholar 

  • Manno, E., Varrica, D., & Dongarrà, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment, 40, 5929–5941. https://doi.org/10.1016/j.atmosenv.2006.05.020

    Article  CAS  Google Scholar 

  • Napit, A., Shakya, S., Shrestha, M., Shakya, R. K., Shrestha, P. K., Pradhananga, A. R., Ghimire, N. G., Pant, D. R., & Shakya, P. R. (2020). Pollution characteristics and human health risks to heavy metals exposure in street dust of Kathmandu Nepal. Advanced Journal of Chemistry-Section A, 3, 645–662. https://doi.org/10.33945/SAMI/AJCA.2020.5.9

    Article  CAS  Google Scholar 

  • Nguyen, V. T., Dat, N. D., Vo, T. D. H., Nguyen, D. H., Nguyen, T. B., Nguyen, L. S. P., Nguyen, X. C., Dinh, V. C., Nguyen, T. H. H., Huynh, T. M. T., & Hoang, H. G. (2021). Characteristics and risk assessment of 16 metals in street dust collected from a highway in a densely populated metropolitan area of Vietnam. Atmosphere, 12(12), 1548. https://doi.org/10.3390/atmos12121548

    Article  CAS  Google Scholar 

  • Pan, H., Lu, X., & Lei, K. (2017). A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment, 609, 1361–1369. https://doi.org/10.1016/j.scitotenv.2017.08.004

    Article  CAS  Google Scholar 

  • Phi, T. H., Chinh, P. M., Ly, L. T. M., & Thai, P. K. (2017). Spatial distribution of elemental concentrations in street dust of Hanoi, Vietnam. Bulletin of Environmental Contamination and Toxicology, 98, 277–282. https://doi.org/10.1007/s00128-016-2001-6

    Article  CAS  Google Scholar 

  • Qadeer, A., Saqib, Z. A., Ajmal, Z., Xing, C., Khalil, S. K., Usman, M., Huang, Y., Bashir, S., Ahmad, Z., & Ahmed, S. (2020). Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustainable Cities and Society, 53, 101959. https://doi.org/10.1016/j.scs.2019.101959

    Article  Google Scholar 

  • Rahman, M. S., Khan, M. D. H., Jolly, Y. N., Kabir, J., Akter, S., & Salam, A. (2019). Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Science of the Total Environment, 660, 1610–1622. https://doi.org/10.1016/j.scitotenv.2018.12.425

    Article  CAS  Google Scholar 

  • Roy, S., Gupta, S. K., Prakash, J., Habib, G., Baudh, K., & Nasr, M. (2019). Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environmental Science and Pollution Research, 26, 30413–30425. https://doi.org/10.1007/s11356-019-06216-5

    Article  CAS  Google Scholar 

  • Shahab, A., Zhang, H., Ullah, H., Rashid, A., Rad, S., Li, J., & Xiao, H. (2020). Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment. Environmental Pollution, 266, 115419. https://doi.org/10.1016/j.envpol.2020.115419

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Bi, C., Li, Y., Teng, J., Wang, L., & Xu, S. (2010). Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environmental Pollution, 158, 694–703. https://doi.org/10.1016/j.envpol.2009.10.020

    Article  CAS  Google Scholar 

  • Thanh-Nho, N., Marchand, C., Strady, E., Vinh, T.-V., & Nhu-Trang, T.-T. (2019). Metals geochemistry and ecological risk assessment in a tropical mangrove (Can Gio, Vietnam). Chemosphere, 219, 365–382. https://doi.org/10.1016/j.chemosphere.2018.11.163

    Article  CAS  Google Scholar 

  • Turap, Y., Talifu, D., Wang, X., Abulizi, A., Maihemuti, M., Tursun, Y., Ding, X., Aierken, T., & Rekefu, S. (2019). Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmospheric Research, 218, 257–268.

    Article  CAS  Google Scholar 

  • United Nations - World Population Prospects (2023). https://population.un.org/

  • Urrutia-Goyes, R., Hernandez, N., Carrillo-Gamboa, O., Nigam, K. D. P., & Ornelas-Soto, N. (2018). Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicology and Environmental Safety, 159, 198–204. https://doi.org/10.1016/j.ecoenv.2018.04.054

    Article  CAS  Google Scholar 

  • USEPA. (1994). Method 200.8, Revision 5.4: Determination of trace elements in waters and wastes by inductively coupled plasma: Mass spectrometry, United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-08/documents/method_200-8_rev_5-4_1994.pdf

  • USEPA. (1996). Soil screening guidance: Technical background document. EPA/540/R-95/128. Office of Solid Waste and Emergency Response.

  • USEPA. (2007). SW-846 test method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils, United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf

  • USEPA. (2010). Integrated Risk Information System (IRIS). United States Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA. (2011). Exposure factors handbook: 2011 Edition, Washington, DC, EPA/600/R-09/052F, United State Environmental Protection Agency.

  • USEPA (2014) Method 6020B (SW-846): Inductively coupled plasma mass spectrometry, United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-12/documents/6020b.pdf.

  • VACNE, (2009). Retrieved February 22, 2023, from http://vacne.org.vn/eight-companies-suspended-from-production-for-air-pollution/e516.html

  • Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A. S. H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A. I., Kasper-Giebl, A., Maenhaut, W., & Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 39, 827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007

    Article  CAS  Google Scholar 

  • Wang, J. M., Jeong, C.-H., Hilker, N., Healy, R. M., Sofowote, U., Debosz, J., Su, Y., Munoz, A., & Evans, G. J. (2021). Quantifying metal emissions from vehicular traffic using real world emission factors. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115805

    Article  Google Scholar 

  • Wiseman, C. L. S., Levesque, C., & Rasmussen, P. E. (2021). Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Science of The Total Environment, 786, 147467. https://doi.org/10.1016/j.scitotenv.2021.147467

    Article  CAS  Google Scholar 

  • Yap, C. K., Krishnan, T., & Chew, W. (2011). Heavy metal concentrations in ceiling fan dusts sampled at schools around Serdang area, Selangor. Sains Malaysiana, 40, 569–575.

    CAS  Google Scholar 

  • Zannoni, D., Valotto, G., Visin, F., & Rampazzo, G. (2016). Sources and distribution of tracer elements in road dust: The Venice mainland case of study. Journal of Geochemical Exploration, 166, 64–72. https://doi.org/10.1016/j.gexplo.2016.04.007

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, X., Zhu, Y., Huang, Z., Yu, Z., Bai, Y., Fan, G., Wang, P., Chen, H., Su, Y., Trujillo-González, J. M., Hu, B. X., Krebs, P., & Hua, P. (2019). The influence of heavy metals in road dust on the surface runoff quality: Kinetic, isotherm, and sequential extraction investigations. Ecotoxicology and Environmental Safety, 176, 270–278. https://doi.org/10.1016/j.ecoenv.2019.03.106

    Article  CAS  Google Scholar 

  • Zhao, G., Zhang, R., Han, Y., Meng, J., Qiao, Q., & Li, H. (2021). Pollution characteristics, spatial distribution, and source identification of heavy metals in road dust in a central eastern city in China: A comprehensive survey. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-021-09584-z

    Article  Google Scholar 

  • Zhou, H., Liu, G., Zhang, L., Zhou, C., Mian, M. M., & Cheema, A. I. (2021). Strategies for arsenic pollution control from copper pyrometallurgy based on the study of arsenic sources, emission pathways and speciation characterization in copper flash smelting systems. Environmental Pollution, 270, 116203. https://doi.org/10.1016/j.envpol.2020.116203

    Article  CAS  Google Scholar 

  • Zhu, X., Yu, W., Li, F., Liu, C., Ma, J., Yan, J., Wang, Y., & Tian, R. (2021). Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district. Science of The Total Environment, 780, 146357. https://doi.org/10.1016/j.scitotenv.2021.146357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Ho Chi Minh City University of Technology and Education, Vietnam, under the Grant Number T2022-116. The authors sincerely thank Mr. Nguyen Minh Duc, Mr. Pham Nhu Thuan, Mr. Nguyen Gia Phu, and Mr. Phan Hoang Long for their assistance with sample collection and pretreatment. Dr. Ly Sy Phu Nguyen gratefully thanks VNUHCM-University of Science for the support of research facilities in this study. As the corresponding author of this study, I would like to express my heartfelt gratitude to MSc. Nguyen Thi Bich Phuong (VNU University of Languages and International Studies) for her meticulous proofreading and insightful suggestions to enhance the quality of this work. Also, I am truly fortunate to have her by my side, constantly inspiring and motivating me to strive for excellence.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NDD, TVN; Methodology: NDD, LSPN, T-D-HV; Formal analysis and investigation: NDD; LSPN; TTLD, ATKT; NT-TH; Writing—original draft preparation: NDD; Writing—review and editing: NDD, TTLD, ATKT, NT-TH; Funding acquisition: NDD; Supervision: NDD; TVN.

Corresponding author

Correspondence to Nguyen Duy Dat.

Ethics declarations

Conflict interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This is an observational study. Therefore, no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 353 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dat, N.D., Nguyen, L.S.P., Vo, TDH. et al. Pollution characteristics, associated risks, and possible sources of heavy metals in road dust collected from different areas of a metropolis in Vietnam. Environ Geochem Health 45, 7889–7907 (2023). https://doi.org/10.1007/s10653-023-01696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01696-4

Keywords

Navigation