Skip to main content
Log in

Soil quality index as a tool to assess biochars soil quality improvement in a heavy metal-contaminated soil

Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The assessment of soil quality improvement provided by biochars is complex and rarely examined. In this work, soil quality indices (SQIs) were produced to evaluate coffee industry feedstock biochars improvement on soil quality samples of a heavy metal-multicontaminated soil. Therefore, a 90-day incubation experiment was carried out with the following treatments: contaminated soil (CT), contaminated soil with pH raised to 7.0 (CaCO3), contaminated soil + 5% (m/m) coffee ground biochar, and contaminated soil + 5% (m/m) coffee parchment biochar (PCM). After incubation, chemical and biological attributes were analyzed, and the data were subjected to principal component analysis and Pearson correlation to obtain a minimum dataset (MDS), which explain the majority of the variance of the data. The MDS-selected attributes were dehydrogenase and protease activity, exchangeable Ca content, phytoavailable content of Cu, and organic carbon, which composed the SQI. The resulting SQI ranged from 0.50 to 0.56, with the highest SQI obtained for the PCM treatment and the lowest for the CT. The phytoavailable content Cu was the determining factor for differentiating PCM from the other treatments, which was a biochar original attribute and helped to improve soil quality based on the SQI evaluation, further than heavy metal immobilization due to the soil sample pH increase. Longer-term experiments may illustrate clearer advantages of using biochar to improve heavy metal-contaminated soil quality, as physical attributes may also respond, and more significant contributions to biological attributes could be obtained as biochar ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abreu, C. A., Abreu, M. F., & Andrade, J. C. (2001). Determinação de cobre, ferro, manganês, zinco, cádmio, cromo, níquel e chumbo em solos usando a solução de DTPA pH 7.3. In B. Van Raij, J. C. Andrade, H. Cantarella, & J. A. Quaggio (Eds.), Análise química para avaliação da fertilidade de solos tropicais (pp. 240–250). Instituto Agronômico: Campinas.

    Google Scholar 

  • Acosta-Martínez, V., & Tabatabai, M. A. (2000). Enzyme activities in a limed agricultural soil. Biology and Fertility of Soils, 31, 85–91. https://doi.org/10.1007/s003740050628

    Article  Google Scholar 

  • Agegnehu, G., Srivastava, A. K., & Bird, M. L. (2017). The role of biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008

    Article  Google Scholar 

  • Al-Wabel, M. I., Usman, A. R. A., Al-Farraj, A. S., Ok, Y. S., Abduljabbar, A., Al-Farraj, A. I., & Sallam, A. S. (2019). Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environmental Geochemistry and Health, 41, 1705–1722. https://doi.org/10.1007/s10653-017-9955-0

    Article  CAS  Google Scholar 

  • Andrews, S. S., & Carrol, C. R. (2001). Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications, 11(6), 1573–1585. https://doi.org/10.2307/3061079

    Article  Google Scholar 

  • Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in northern California. Agriculture, Ecosystems & Environment, 90, 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8

    Article  Google Scholar 

  • Araújo, E. A., Ker, J. C., Neves, J. C. L., & Lani, J. L. (2012). Qualidade do solo: Conceitos, indicadores e avaliação. Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, 5(1), 187–206. https://doi.org/10.5777/PAeT.V5.N1.12

    Article  Google Scholar 

  • Araújo, Q., Ahnert, D., Loureiro, G., Faria, J., Fernandes, C., & Baligar, V. (2018). Soil quality for cacao cropping systems. Archives of Agronomy and Soil Science, 64(13), 1892–1909. https://doi.org/10.1080/03650340.2018.1467005

    Article  Google Scholar 

  • Armenize, E., Gordon-Redmile, M. A., Stellaci, A. M., Ciccarese, A., & Rubino, P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91–98. https://doi.org/10.1016/j.still.2013.02.013

    Article  Google Scholar 

  • Biswas, S., Hazra, G. C., Purakayastha, T. J., Saha, N., Mitran, T., Roy, S. S., Basak, N., & Mandal, B. (2017). Establishment of critical limits of indicators and indexes of soil quality in rice-rice cropping systems under different soil orders. Geoderma, 292, 34–48. https://doi.org/10.1016/j.geoderma.2017.01.003

    Article  Google Scholar 

  • Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., Guede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., Groenigen, J. W. V., & Brussaard, L. (2018). Soil quality: A critical review. Soil Biology & Biochemistry, 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  • Calazans, S. O. L., Morais, V. A., Scolforo, J. R. S., Zinn, Y. L., Mello, J. M., Mancini, L. T., & Silva, C. A. (2018). Soil organic carbon as a key predictor of N in forest soils of Brazil. Journal of Soils and Sediments, 18, 1242–1251. https://doi.org/10.1007/s11368-016-1557-4

    Article  CAS  Google Scholar 

  • Camargo, O. A., Moniz, A. C., Jorge, J. A., & Valadares, J. M. A. S. (2009). Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Campinas: Instituto Agronômico.

  • Carnier, R., Coscione, A. R., Abreu, C. A., Melo, L. C. A., & Silva, A. F. (2022). Cadmium and lead adsorption and desorption by coffee waste-derived biochars. Bragantia, 81(e0622), 2022. https://doi.org/10.1590/1678-4499.20210142

    Article  CAS  Google Scholar 

  • Carnier, R., Coscione, A. R., Delaqua, D., & Abreu, C. A. (2021). Coffee industry wate-derived biochar: Characterization and agricultural use evaluation according to Brazilian legislation. Bragantia, 80(e5721), 2021. https://doi.org/10.1590/1678-4499.20210159

    Article  CAS  Google Scholar 

  • Casida, L., Klein, D. A., & Thomas, S. (1964). Soil dehydrogenase activity. Soil Science, 98(6), 371–376.

    Article  CAS  Google Scholar 

  • Cherubin, M. R., Karlen, D. L., Cerri, C. E. P., Franco, A. L. C., Tormena, C. A., Davies, C. A., & Cerri, C. C. (2016). Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE, 11(3), 1–26. https://doi.org/10.1371/journal.pone.0150860

    Article  CAS  Google Scholar 

  • CONAMA - Conselho Nacional do Meio Ambiente. (2009). Resolução n.º 420 de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Brasília: DOU de 30/12/2009.

  • COPAM/CERH - Conselho Estadual de Política Ambiental e Conselho Estadual de Recursos Hídricos. (2010). Deliberação Normativa Conjunta COPAM/CERH nº 02 de 08 de setembro de 2010. Institui o Programa Estadual de Gestão de Áreas Contaminadas, que estabelece as diretrizes e procedimentos para a proteção da qualidade do solo e gerenciamento ambiental de áreas contaminadas por substâncias químicas. Minas Gerais: Diário executivo de 16/09/10.

  • Debi, S. R., Bhattacharjee, S., Aka, T. D., Paul, S. C., Roy, M. C., Salam, M. A., Islam, M. S., & Azady, A. R. (2019). Soil quality of cultivated land in urban and rural area on the basis of both minimum data set and expert opinion. International Journal of Human Capital in Urban Management, 4(4), 247–258. https://doi.org/10.22034/IJHCUM.2019.04.01

    Article  Google Scholar 

  • Dias, D. R., Valencia, N. R., Franco, D. A. Z., & López-Núñez, J. C. (2014). Management and utilization of wastes from coffee processing. In R. F. Schwan & G. H. Fleet (Eds.), Cocoa and coffee fermentations (pp. 376–382). CRC Taylor and Francis.

    Google Scholar 

  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility: A review. Agronomy for Sustainable Development, 36(36), 1–18. https://doi.org/10.1007/s13593-016-0372-z

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology & Biochemistry, 9, 167–172. https://doi.org/10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology & Biochemistry, 20(5), 601–606. https://doi.org/10.1016/0038-0717(88)90141-1

    Article  CAS  Google Scholar 

  • Fageria, N. K., & Stone, L. F. (2008). Micronutrient deficiency problems in South America. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 245–266). Springer.

    Chapter  Google Scholar 

  • Gałązka, A., Jończyk, K., Gawryjołek, K., & Ciepiel, J. (2019). The impact of biochar doses on soil quality and microbial functional diversity. BioResouces, 12(4), 7852–7868. https://doi.org/10.15376/biores.14.4.7852-7868

    Article  CAS  Google Scholar 

  • Glover, J. D., Reganold, J. D., & Andrews, P. K. (2000). Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agriculture, Ecosystems & Environment, 80, 29–45. https://doi.org/10.1016/S0167-8809(00)00131-6

    Article  Google Scholar 

  • Guo, X., Zhao, T., Chang, W., Xiao, C., & He, Y. (2018). Evaluation the effect of coal mining subsidence on the agricultural soil quality using principal components analysis. Chilean Journal of Agricultural Research, 78(2), 173–182. https://doi.org/10.4067/S0718-58392018000200173

    Article  Google Scholar 

  • Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., & Xing, B. (2020). Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 364, 114184. https://doi.org/10.1016/j.geoderma.2020.114184

    Article  CAS  Google Scholar 

  • He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846–855. https://doi.org/10.1016/j.envpol.2019.05.151

    Article  CAS  Google Scholar 

  • Hu, X. F., Jiang, Y., Shu, Y., Hu, X., Liu, L., & Luo, F. (2014). Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration, 147, 139–150. https://doi.org/10.1016/j.gexplo.2014.08.001

    Article  CAS  Google Scholar 

  • International Biochar Initiative (IBI). (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. Biochar Standards V.2.1. 61p. 2015. Retrieved August 15, from 2018. https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf

  • Janusckiewicz, E. R., Raposo, E., Martins, B. M. P. R., Magalhães, M. A., Panosso, A. R., Melo, G. M. P., & Ruggieri, A. C. (2019). Atividade enzimática do solo em pastagens de Urochloa Manejados sob ofertas de forragem. Forragicultura e Pastagens, 76, 1–12. https://doi.org/10.17523/bia.2019.v76.e1460

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press/Taylor & Francis Group.

    Google Scholar 

  • Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61, 4–10. https://doi.org/10.2136/sssaj1997.03615995006100010001x

    Article  CAS  Google Scholar 

  • Khaden, A., Besharati, H., & Khalaj, M. A. (2019). Biochar application changed arylsulfatase activity, kinetic and thermodynamic aspects. European Journal of Soil Biology, 95, 103134. https://doi.org/10.1016/j.ejsobi.2019.103134

    Article  CAS  Google Scholar 

  • Kumar, S., Chaudhuri, S., & Maiti, S. K. (2013). Soil dehydrogenase enzyme activity in natural and mine soil: A review. Middle-East Journal of Scientific Research, 13(7), 898–906. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801

    Article  CAS  Google Scholar 

  • Ladd, J. N., & Butler, J. H. A. (1972). Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology & Biochemistry, 4(1), 19–30. https://doi.org/10.1016/0038-0717(72)90038-7

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, Y., Wang, Y., Lu, H., He, L., & Yang, S. (2018). Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degradation & Development, 29(11), 3985–3994. https://doi.org/10.1002/ldr.3147

    Article  Google Scholar 

  • Lopes, A. C., Souza, M. G., Chaer, G. M., Junior, F. B. R., Goedert, W. J., & Mendes, I. C. (2013). Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Biology & Biochemistry, 77, 461–472. https://doi.org/10.2136/sssaj2012.0191

    Article  CAS  Google Scholar 

  • Masto, R., Chhonkar, P., Singh, D., & Patra, A. K. (2008). Alternative soil quality indexes for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment, 136, 419–435. https://doi.org/10.1007/s10661-007-9697-z

    Article  CAS  Google Scholar 

  • Masud, M. M., Li, J. Y., & Xu, R. K. (2014). Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol*1. Pedosphere, 24(6), 791–798. https://doi.org/10.1016/S1002-0160(14)60066-7

    Article  Google Scholar 

  • Mukherjee, A., & Lai, R. (2014). Comparison of soil quality index using three methods. PLOS ONE, 9(8), 105981. https://doi.org/10.1371/journal.pone.0105981

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540–550. https://doi.org/10.1016/j.scitotenv.2015.10.035

    Article  CAS  Google Scholar 

  • Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., Rafeeq, M., & Shaeen, Z. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Pb, Zn, Fe) in the soil, water and plants analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. International Journal of Pharmaceutical Sciences and Research, 7(3), 89–97.

    CAS  Google Scholar 

  • Neto, B. B., Scarmínio, I. S., & Bruns, R. E. (2006). 25 anos de quimiometria no Brasil. Química Nova, 29(6), 1401–1406. https://doi.org/10.1590/S0100-40422006000600042

    Article  Google Scholar 

  • Obade, V. P. (2019). Integrating management information with soil quality dynamics to monitor agricultural productivity. Science of the Total Environment, 651, 2036–2043. https://doi.org/10.1016/j.scitotenv.2018.10.106

    Article  CAS  Google Scholar 

  • Obade, V. P., & Lal, R. (2016). A standardized soil quality index for diverse field conditions. Science of the Total Environment, 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096

    Article  CAS  Google Scholar 

  • Pereira, P., Bogunovic, I., Munoz-Rojas, M., & Brevik, E. C. (2018). Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, 7–13. https://doi.org/10.1016/j.coesh.2017.12.003

    Article  Google Scholar 

  • Puga, A. P., Melo, L. C. A., Abreu, C. A., Coscione, A. R., & Paz-ferreiro, J. (2016). Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res, 164, 25–33. https://doi.org/10.1016/j.still.2016.01.008

    Article  Google Scholar 

  • Quaggio, J. A., & van Raij, B. (2001c) Determinação do pH em cloreto de cálcio e da acidez total. In B. van Raij, J. C. Andrade, H. Cantarella, J. A. Quaggio (Eds.), Análise química para avaliação da fertilidade de solos tropicais (pp 181–188). Instituto Agronômico, Campinas.

  • Quaggio, J. A., & van Raij, B. (2001b). Determinação de fósforo, cálcio, magnésio e potássio extraído com resina trocadora de íons. In B. van Raij, J. C. Andrade, H. Cantarella, J. A. Quaggio (Eds.), Análise química para avaliação da fertilidade de solos tropicais (pp. 189–199). Instituto Agronômico, Campinas.

  • Quaggio, J. A., & van Raij, B. (2001a). Determinação da matéria orgânica. In B. van Raij, J. C. Andrade, H. Cantarella, J. A. Quaggio (Eds.), Análise química para avaliação da fertilidade de solos tropicais (pp. 173–180). Instituto Agronômico, Campinas.

  • Raiesi, F. (2017). A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75, 307–320. https://doi.org/10.1016/j.ecolind.2016.12.049

    Article  Google Scholar 

  • Raiesi, F., & Kabiri, V. (2016). Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators, 71, 198–207. https://doi.org/10.1016/j.ecolind.2016.06.061

    Article  CAS  Google Scholar 

  • Ramos, A. M. R., Amorim, B. M. B., Freire, C. T. M., & Lima, D. L. F. A. (2019). Atributos físicos do solo em sistema consorciado e monocultivo do maracujá (Passiflora edulis sims). Brazilian Journal of Biosystems Engineering, 13(1), 80–87. https://doi.org/10.18011/bioeng2019v13n1p80-87

    Article  Google Scholar 

  • Randolph, P., Bansode, R. R., Hassan, O. A., Rehrah, D. J., Ravella, R., Reddy, M. R., Watts, D. W., Novak, J. M., & Ahmedna, M. (2017). Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management, 192, 271–280. https://doi.org/10.1016/j.jenvman.2017.01.061

    Article  CAS  Google Scholar 

  • Rodionova, O., Kucheryavskiy, S., & Pomerantsev, A. (2021). Efficient tools for a principal component analysis of complex data—a tutorial. Chemometrics and Intelligent Laboratory Systems, 213, 104304. https://doi.org/10.1016/j.chemolab.2021.104304

    Article  CAS  Google Scholar 

  • Sánchez-Monedero, M. A., Cayuela, M. L., Sánchez-Garcia, M., Vandecasteele, B., D’House, T., López, G., Martinez-Gaitán, C., Kuikman, P. J., Sinicco, T., & Mondini, C. (2019). Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the European project Fertiplus. Agronomy, 9, 225. https://doi.org/10.3390/agronomy9050225

    Article  CAS  Google Scholar 

  • Singh, B., Arbestain, M. C., & Lehmann, J. (2017). Biochar: A guide to analytical methods. CSIRO Publishing.

    Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulfatase activity of soils. Soil Science Society of America Journal, 34(2), 225–229. https://doi.org/10.2136/sssaj1970.03615995003400020016x

    Article  CAS  Google Scholar 

  • Tan, X., Wang, Z., Lu, G., He, W., Wei, G., Huang, F., Xu, X., & Shen, W. (2017). Kinetics of soil dehydrogenase in response to exogenous Cd toxicity. Journal of Hazardous Materials, 329, 299–309. https://doi.org/10.1016/j.jhazmat.2017.01.055

    Article  CAS  Google Scholar 

  • Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., Luo, L., Yang, Y., Huang, H., & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751

    Article  CAS  Google Scholar 

  • Tesfahunegn, G. B. (2014). Soil quality assessment strategies for evaluating soil degradation in northern Ethiopia. Applied and Environmental Soil Science, 2014, 646502. https://doi.org/10.1155/2014/646502

    Article  CAS  Google Scholar 

  • Tozzi, F. V. N., Coscione, A. R., Puga, A. P., Carvalho, C. S., Cerri, C. E. P., & Andrade, C. A. (2019). Carbon stability and biochar aging process after soil application. Horticulture International Journal, 3, 320–329.

    Google Scholar 

  • Trupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F. P., Lustrado, G., Lonardo, S. D., Fantasma, F., Tognetti, R., & Scippa, G. S. (2017). The effect of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy. https://doi.org/10.1155/2017/3158207

    Article  Google Scholar 

  • Turner, B. L. (2010). Variation in pH of hydrolytic enzyme activities in tropical rain forest soil. Applied and Environment Microbiology, 76(19), 6485–6493. https://doi.org/10.1128/AEM.00560-10

    Article  CAS  Google Scholar 

  • U.S - EPA. (2007). Method 3051A (SW-846): microwave assisted acid digestion of sediments, Sludges, soils and oils. Revision 1. Washington, DC. Retrieved August 20, from 2018. https://www.epa.gov/homeland-security-research/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges

  • van Raij, B., Cantarella, H., Quaggio, J.A., & Furlani, A. M. C. (1996). Recomendação de adubação e calagem para o estado de São Paulo. 2rd ed. Fundação IAC, Campinas.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass. Soil Biology & Biochemistry, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Vasu, D., Singh, S. K., Ray, S. K., Duraisami, P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010

    Article  CAS  Google Scholar 

  • Vezanni, F. M., & Mielniczuk, J. (2009). Uma visão sobre qualidade do solo. Revista brasileira de ciência do solo, 33, 743–755. https://doi.org/10.1590/S0100-06832009000400001

    Article  Google Scholar 

  • Vithanage, M., Bendara, T., Al-Wabel, M. I., Abduljabbar, A., Usman, A. R. A., Ahmad, M., & Ok, Y. S. (2018). Soil enzyme activities in waste biochar amended multi-metal contaminated soil, effect of different pyrolysis temperatures and application rates. Communications in Soil Science and Plant Analysis, 48(5), 653–643. https://doi.org/10.1080/00103624.2018.1435795

    Article  CAS  Google Scholar 

  • Wang, D., Bai, J., Wang, W., Zhang, G., Cui, B., Liu, X., & Li, X. (2018a). Comprehensive assessment of soil quality for different wetlands in a Chinese delta. Land Degradation and Development, 29(10), 3783–3794. https://doi.org/10.1002/ldr.3086

    Article  Google Scholar 

  • Wang, Y., Xu, Y., Li, D., Tang, B., Man, S., Jia, Y., & Xu, H. (2018b). Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Science of the Total Environment, 621, 1057–1065. https://doi.org/10.1016/j.scitotenv.2017.10.121

    Article  CAS  Google Scholar 

  • Wolińska, A., & Stepniewska, Z. (2012). Dehydrogenase activity in the soil environment. In R. A. Canuto (Ed.), Dehydrogenases (pp. 183–210). Londres: IntechOpen.

    Google Scholar 

  • Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., Farreal, M., Hall, T., Yang, X., & Bolan, N. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621, 148–159. https://doi.org/10.1016/j.scitotenv.2017.11.214

    Article  CAS  Google Scholar 

  • Yang, X., Liu, J., Mcgrouther, K., Huang, H., Lu, K., Guo, X., He, L., Lim, X., Che, L., Ye, Z., & Wang, H. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23, 974–984. https://doi.org/10.1007/s11356-015-4233-0

    Article  CAS  Google Scholar 

  • Yu, P., Liu, S., Zhang, L., Li, Q., & Zhou, D. (2018). Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Science of the Total Environment, 616–617, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301

    Article  CAS  Google Scholar 

  • Yu, Z., Ling, L., Singh, B. P., Luo, Y., & Xu, J. (2020). Gain in carbon: Deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils. Science of the Total Environment, 746, 1–10. https://doi.org/10.1016/j.scitotenv.2020.141057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was funded by São Paulo Research Foundation (FAPESP, Brazil), Grant number 2016/19368-6. The scholarship was granted to the first author by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) grant number: Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RC, ARC, CADA, ASP and AOF. The first draft of the manuscript was written by RC, ARC and CADA, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aline Renée Coscione.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnier, R., de Abreu, C.A., de Andrade, C.A. et al. Soil quality index as a tool to assess biochars soil quality improvement in a heavy metal-contaminated soil. Environ Geochem Health 45, 6027–6041 (2023). https://doi.org/10.1007/s10653-023-01602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01602-y

Keywords

Navigation