Skip to main content
Log in

An in-depth investigation of the influence of sample size on PCA-MLR, PMF, and FA-NNC source apportionment results

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The mechanism by which parameters influence the source apportionment results of receptor models is not well understood. Three mature receptor models, namely, principal component analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF) and factor analysis with nonnegative constraints (FA-NNC), were comparatively employed for source apportionment of 16 polycyclic aromatic hydrocarbons in 30 street dust samples. The results indicated that the FA-NNC and PMF models produced results with a higher degree of similarity than the results obtained with the PCA-MLR model. Moreover, when the sample size was gradually decreased, similar source profiles were extracted that were consistent with results obtained from all samples. However, the overall contribution rates were not as stable as the source profiles. The PCA-MLR results remained the most stable in both aspects. FA-NNC and PMF performed better in regards to the stability of contribution rates and source profiles, respectively. Improvements in the goodness of fit of overall and individual pollutants were always accompanied by a decrease in the relevance among the variables, indicating that while the model simulation effect was improved, the credibility of the results decreased. Thus, finding an appropriate number of sample size is more appropriate than simply involving too many samples in source apportionment models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2018). Sensitivity of a chemical mass balance model for PM2.5 to source profiles for differing styles of cooking. Atmospheric Environment, 178, 282–285.

    Article  CAS  Google Scholar 

  • Bozzetti, C., Sosedova, Y., Xiao, M., Daellenbach, K. R., Ulevicius, V., Dudoitis, V., Mordas, G., Bycenkiene, S., Bycenkiene, S., Plauskaite, K., Vlachou, A., Golly, B., Chazeau, B., Besombes, J., Baltensperger, U., Jaffrezo, J., Slowik, J. G., El Haddad, I., & Prevot, A. S. H. (2017). Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe. Atmospheric Chemistry and Physics, 17, 117–141.

    Article  CAS  Google Scholar 

  • Bzdusek, P. A., Christensen, E. R., Li, A., & Zou, Q. M. (2004). Source apportionment of sediment PAHs in Lake Calumet, Chicago: Application of factor analysis with nonnegative constraints. Environmental Science and Technology, 38, 97–103.

    Article  CAS  Google Scholar 

  • Callen, M. S., Iturmendi, A., Lopez, J. M., & Mastral, A. M. (2014). Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model. Environ. Sci. Pollut. R., 21, 2064–2076.

    Article  CAS  Google Scholar 

  • Cesari, D., Amato, F., Pandolfi, M., Alastuey, A., Querol, X., & Contini, D. (2016). An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environ. Sci. Pollut. R., 23, 15133–15148.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., & Wang, J. (2012). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Science of the Total Environment, 414, 293–300.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Li, J., Wu, J., & Wang, J. (2016). Source apportionment of trace metals in river sediments: A comparison of three methods. Environmental Pollution, 211, 28–37.

    Article  CAS  Google Scholar 

  • Chi, T. V., Lin, C., Shern, C., Yeh, G., Le, V. G., & Huu, T. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, 32–42.

    Article  Google Scholar 

  • Christensen, E. R., & Bzdusek, P. A. (2005). PAHs in sediments of the Black River and the Ashtabula River, Ohio: Source apportionment by factor analysis. Water Research, 39, 511–524.

    Article  CAS  Google Scholar 

  • Cui, J., Zhou, F., Gao, M., Zhang, L., Zhang, L., Du, K., Leng, Q., Zhang, Y., He, D., Yang, F., & Chan, A. (2018). A comparison of various approaches used in source apportionments for precipitation nitrogen in a mountain region of southwest China. Environmental Pollution, 241, 810–820.

    Article  CAS  Google Scholar 

  • Fraser, M. P., Cass, G. R., Simoneit, B., & Rasmussen, R. A. (1997). Air quality model evaluation data for organics.4. C-2-C-36 non-aromatic hydrocarbons. Environmental Science and Technology, 31, 2356–2367.

    Article  CAS  Google Scholar 

  • Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment, 42, 8139–8149.

    Article  CAS  Google Scholar 

  • Gupta, S., Gadi, R., Sharma, S. K., & Mandal, T. K. (2018). Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustainable Citie and Society., 39, 52–67.

    Article  Google Scholar 

  • Hopke, P. K. (2010). Discussion of “Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations” by YuanXun Zhang, Rebecca J. Sheesley, Min-Suk Bae and James J. Schauer. Atmospheric Environment, 44, 1138–1138.

    Article  CAS  Google Scholar 

  • Hopke, P. K. (2016). Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association, 66, 237–259.

    Article  Google Scholar 

  • Huang, Y., Deng, M., Wu, S., Jan, J., Li, T., Yang, X., & He, Z. (2018). A modified receptor model for source apportionment of heavy metal pollution in soil. Journal of Hazardous Materials, 354, 161–169.

    Article  CAS  Google Scholar 

  • Jain, S., Sharma, S. K., Mandal, T. K., & Saxena, M. (2017). Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology.

  • Johnson, G. W. (1997). Application of polytopic vector analysis to environmental geochemistry problems, Ph. D. Dissertation. University of South Carolina, Columbia, SC.

  • Karagulian, F., Belis, C. A., Dora, C. F. C., Pruess-Ustuen, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35, 2288–2294.

    Article  CAS  Google Scholar 

  • Khairy, M. A., & Lohmann, R. (2013). Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 91, 895–903.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34, 2785–2790.

    Article  CAS  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881.

    Article  CAS  Google Scholar 

  • Lawrence, S., Sokhi, R., Ravindra, K., Mao, H., Prain, H. D., & Bull, I. D. (2013). Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmospheric Environment, 77, 548–557.

    Article  CAS  Google Scholar 

  • Lee, M. (2012). Analytical chemistry of polycyclic aromatic compounds. Elsevier.

    Google Scholar 

  • Lee, E., Chan, C. K., & Paatero, P. (1999). Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33, 3201–3212.

    Article  CAS  Google Scholar 

  • Li, J., Dong, H., Zhang, D., Han, B., Zhu, C., Liu, S., Liu, X., Ma, Q., & Li, X. (2015). Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea. China. Mar. Pollut. Bull., 96, 485–490.

    Article  CAS  Google Scholar 

  • Li, Y., Song, N., Yu, Y., Yang, Z., & Shen, Z. (2017). Characteristics of PAHs in street dust of Beijing and the annual wash-off load using an improved load calculation method. Science of the Total Environment, 581, 328–336.

    Article  Google Scholar 

  • Luo, X., Xue, Y., Wang, Y., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157.

    Article  CAS  Google Scholar 

  • Men, C., Liu, R., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2019). Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Science of the Total Environment, 652, 27–39.

    Article  Google Scholar 

  • Miller, S. L., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36, 3629–3641.

    Article  CAS  Google Scholar 

  • Mostafa, A. R., Hegazi, A. H., El-Gayar, M. S., & Andersson, J. T. (2009). Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel, 88, 95–104.

    Article  CAS  Google Scholar 

  • Norris, G. A., Duvall, R., Brown, S. G., Bai, S. (2014). EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide prepared for the US environmental protection agency office of research and development, Washington, DC. Inc., Petaluma.

  • Ozeki, T., Koide, K., & Kimoto, T. (1995). Evaluation of sources of acidity in rainwater using a constrained oblique rotational factor-analysis. Environmental Science and Technology, 29, 1638–1645.

    Article  CAS  Google Scholar 

  • Paatero, P. (1999). The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8, 854–888.

    Google Scholar 

  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmentrics., 5, 111–126.

    Article  Google Scholar 

  • Paatero, P., Eberly, S., Brown, S. G., & Norris, G. A. (2014). Methods for estimating uncertainty in factor analytic solutions. Atmospheric Measurement Techniques, 7, 781–797.

    Article  Google Scholar 

  • Park, S., Marmur, A., & Russell, A. G. (2013). Environmental risk assessment: Comparison of receptor and air quality models for source apportionment. Human and Ecological Risk Assessment, 19, 1385–1403.

    Article  CAS  Google Scholar 

  • Rachdawong, P., & Christensen, E. R. (1997). Determination of PCB sources by a principal component method with nonnegative constraints. Environmental Science and Technology, 31, 2686–2691.

    Article  CAS  Google Scholar 

  • Sofowote, U. M., McCarry, B. E., & Marvin, C. H. (2008). Source apportionment of PAH in Hamilton Harbour suspended sediments: Comparison of two factor analysis methods. Environmental Science and Technology, 42, 6007–6014.

    Article  CAS  Google Scholar 

  • Song, N., Ma, J., Yu, Y., Yang, Z., & Li, Y. (2015). New observations on PAH pollution in old heavy industry cities in northeastern China. Environmental Pollution, 205, 415–423.

    Article  CAS  Google Scholar 

  • Teixeira, E. C., Agudelo-Castaneda, D. M., & Mattiuzi, C. D. P. (2015). Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models. Science of the Total Environment, 538, 212–219.

    Article  CAS  Google Scholar 

  • Tian, F., Li, F., Wang, D., & Wang, Y. (2018). Source apportionment of polycyclic aromatic hydrocarbons in sediment by the application of non-negative factor analysis: A case study of Dalian bay. International Journal of Environmental Research and Public Health, 15, 761.

    Article  Google Scholar 

  • Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., & Jimenez, J. L. (2009). Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9, 2891–2918.

    Article  CAS  Google Scholar 

  • Wan, Y., Jin, X. H., Hu, J. Y., & Jin, F. (2007). Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, North China. Environmental Science and Technology, 41, 3109–3114.

    Article  CAS  Google Scholar 

  • Wu, Y., Yang, L., Zheng, X., Zhang, S., Song, S., Li, J., & Hao, J. (2014). Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Science of the Total Environment, 470, 76–83.

    Article  Google Scholar 

  • Yatkin, S., Adali, M., & Bayram, A. (2016). A study on the precipitation in Izmir, Turkey: Chemical composition and source apportionment by receptor models. Journal of Atmospheric Chemistry, 73, 241–259.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sheesley, R. J., Bae, M., & Schauer, J. J. (2009). Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations. Atmospheric Environment, 43, 4951–4958.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zheng, M., Cai, J., Yan, C., Hu, Y., Russell, A. G., Wang, X., Wang, S., & Zhang, Y. (2015). Comparison and overview of PM_(2.5)source apportionment methods. Chinese Science Bulletin, 60, 109–121.

    Article  Google Scholar 

  • Zhao, Z., Zeng, H., Wu, J., & Zhang, L. (2017). Concentrations, sources and potential ecological risks of polycyclic aromatic hydrocarbons in soils from Tajikistan. International Journal of Environment and Pollution, 61, 13–28.

    Article  CAS  Google Scholar 

  • Zhou, F., Huang, G. H., Guo, H., Zhang, W., & Hao, Z. (2007). Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Research, 41, 3429–3439.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program [2016YFA0602304], the Fund for the State Key Program of National Natural Science of China [Grant number 41530635], the Innovative Research Group of the National Natural Science Foundation of China [Number 51721093], and the Interdisciplinary Research Funds of Beijing Normal University.

Author information

Authors and Affiliations

Authors

Contributions

JF did the methodology, software, formal analysis, visualization and writing—original Draft part of this research. NS did the conceptualization, investigation, validation, data curation part of this research. YL did the supervision, project administration, funding acquisition, writing—review & editing part of this research.

Corresponding author

Correspondence to Yingxia Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 781 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Song, N. & Li, Y. An in-depth investigation of the influence of sample size on PCA-MLR, PMF, and FA-NNC source apportionment results. Environ Geochem Health 45, 5841–5855 (2023). https://doi.org/10.1007/s10653-023-01598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01598-5

Keywords

Navigation