Skip to main content
Log in

A comprehensive approach to quantify the source identification and human health risk assessment of toxic elements in park dust

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this research, enrichment factor (EF) and pollution load index were utilized to explore the contamination characteristics of toxic elements (TEs) in park dust. The results exhibited that park dust in the study area was mainly moderately polluted, and the EF values of dust Cd, Zn, Pb, Cu and Sb were all > 1. The concentrations of Cr, Cu, Zn and Pb increased with the decrease of dust particle size. The investigation results of chemical speciation and bioavailability of TEs showed that Zn had the highest bioavailability. Three sources of TEs were determined by positive matrix factorization model, Pearson correlation analysis and geostatistical analysis, comprising factor 1 mixed sources of industrial and transportation activities (46.62%), factor 2 natural source (25.56%) and factor 3 mixed source of agricultural activities and the aging of park infrastructures (27.82%). Potential ecological risk (PER) and human health risk (HHR) models based on source apportionment were exploited to estimate PER and HHR of TEs from different sources. The mean PER value of TEs in the park dust was 114, indicating that ecological risk in the study area was relatively high. Factor 1 contributed the most to PER, and the pollution of Cd was the most serious. There were no significant carcinogenic and non-carcinogenic risks for children and adults in the study area. And factor 3 was the biggest source of non-carcinogenic risk, and As, Cr and Pb were the chief contributor to non-carcinogenic risk. The primary source of carcinogenic risk was factor 2, and Cr was the cardinal cancer risk element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta, J. A., Faz, A., Kalbitz, K., Jansen, B., & Martínez, S. M. (2011). Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. Journal of Environmental Monitoring, 13(11), 3087–3096. https://doi.org/10.1039/C1EM10364D

    Article  CAS  Google Scholar 

  • Adewumi, A. J., & Laniyan, T. A. (2020). Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area, Northwest Nigeria. Science of the Total Environment, 718, 137235. https://doi.org/10.1016/j.scitotenv.2020.137235

    Article  CAS  Google Scholar 

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environment Safety, 194, 110406. https://doi.org/10.1016/j.ecoenv.2020.110406

    Article  CAS  Google Scholar 

  • Ali, N., Eqani, S. A. M. A. S., Nazar, E., Alhakamy, N. A., Rashid, M. I., Shahzad, K., Zeb, J., Shen, H., Ismail, I. M. I., & Albar, H. M. S. A. (2021). Arsenic and lead in the indoor residential settings of different socio-economic status; assessment of human health risk via dust exposure. Environmental Science and Pollution Research, 28(11), 13288–13299. https://doi.org/10.1007/s11356-020-11546-w

    Article  CAS  Google Scholar 

  • Ali-Taleshi, M. S., Feiznia, S., Bourliva, A., & Squizzato, S. (2021). Road dusts-bound elements in a major metropolitan area, Tehran (Iran): Source tracking, pollution characteristics, ecological risks, spatiotemporal and geochemical patterns. Urban Climate, 39, 100933. https://doi.org/10.1016/j.uclim.2021.100933

    Article  Google Scholar 

  • Ali-Taleshi, M. S., Feiznia, S., Shahbazi, R., & Squizzato, S. (2020b). Characterization and Source Identification of Heavy Metals in Atmospheric Deposited Dust of Tehran in 2018. Journal of Research in Environmental Health, 6(1), 56–59.

    Google Scholar 

  • Ali-Taleshi, M. S., Moeinaddini, M., Feiznia, S., & Squizzato, S. (2020a). Heavy metal pollution in street dust from tehran in 2018: Metal richness and degree of contamination assessment. Journal of Environmental Health Engineering, 7(2), 179–194.

    Article  Google Scholar 

  • Amaya, F. U., Cristina, L. M., Enrique, R., & Maria, L. F. M. (2009). Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 165(1–3), 1008–1015. https://doi.org/10.1016/j.jhazmat.2008.10.118

    Article  CAS  Google Scholar 

  • Baltas, H., Sirin, M., Gokbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere, 241, 125015. https://doi.org/10.1016/j.chemosphere.2019.125015

    Article  CAS  Google Scholar 

  • Behnam, K., Sajjad, A. H., Farid, M., Hossein, D., & Naghmeh, S. (2020). Polycyclic aromatic hydrocarbons in street dust of Bushehr city, Iran: Status, source, and human health risk assessment. Polycyclic Aromatic Compounds, 40(1), 61–75. https://doi.org/10.1080/10406638.2017.1354897

    Article  CAS  Google Scholar 

  • Bian, B., & Zhu, W. (2009). Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China. Environmental Geochemistry and Health, 31(4), 511–520. https://doi.org/10.1007/s10653-008-9203-8

    Article  CAS  Google Scholar 

  • Cai, L. M., Jiang, H. H., & Luo, J. (2019a). Metals in soils from a typical rapidly developing county, Southern China: Levels, distribution, and source apportionment. Environmental Science and Pollution Research, 26(19), 19282–19293. https://doi.org/10.1007/s11356-019-05329-1

    Article  CAS  Google Scholar 

  • Cai, L. M., Wang, Q. S., Wen, H. H., Luo, J., & Wang, S. (2019b). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 168, 184–191. https://doi.org/10.1016/j.ecoenv.2018.10.092

    Article  CAS  Google Scholar 

  • Cai, L. M., Xu, Z. C., Bao, P., He, M., Dou, L., Chen, L. G., Zhou, Y. Z., & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195. https://doi.org/10.1016/j.gexplo.2014.09.010

    Article  CAS  Google Scholar 

  • CEPA (Chinese Environmental Protection Administration) (1995). Environmental Quality Standard for Soils (GB15618-–1995) (in Chinese). http://www.mofcom.gov.cn/article/zt_wzpx/subjecto/200601/20060101355889.shtml

  • Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., Fan, K. K., Yu, K., Wu, X., & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551. https://doi.org/10.1016/j.chemosphere.2004.12.072

    Article  CAS  Google Scholar 

  • Chen, Y. N., Hu, Z. Q., Bai, H., Shen, W. (2022). Variation in Road Dust Heavy Metal Concentration, Pollution, and Health Risk with Distance from the Factories in a City-Industry Integration Area, China. International Journal of Environmental Research and Public Health, 19(21), 14562. https://doi.org/10.3390/ijerph192114562

  • CNEMC (China National Environmental Monitoring Centre) (1990). Soil Elements Background Values in China. China Environmental Science Press (in Chinese).

  • Cui, X. T., Wang, X. Q., & Liu, B. (2020). The characteristics of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks. Journal of Geochemical Exploration, 210, 106432. https://doi.org/10.1016/j.gexplo.2019.106432

    Article  CAS  Google Scholar 

  • Duan, J. C., Tan, J. H., Hao, J. M., & Chai, F. H. (2014). Size distribution, characteristics and sources of heavy metals in haze episod in Beijing. Journal of Environmental Sciences, 26(01), 189–196. https://doi.org/10.1016/S1001-0742(13)60397-6

    Article  CAS  Google Scholar 

  • Guan, Q. Y., Zhao, R., Pan, N. H., Wang, F. F., Yang, Y. Y., & Luo, H. P. (2019). Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. Journal of Cleaner Production, 237, 189–197. https://doi.org/10.1016/j.jclepro.2019.117792

    Article  CAS  Google Scholar 

  • Guo, B., Su, Y., Pei, L., Wang, X. F., Zhang, B., Zhang, D. M., & Wang, X. X. (2020). Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: A case study in Xi’an, Shaanxi Province, a northwest city of China. Environmental Science and Pollution Research, 27(19), 2400–24412. https://doi.org/10.1007/s11356-020-08744-x

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Han, Q., Wang, M., Cao, J., Gui, C., Liu, Y., He, X., He, Y., & Liu, Y. (2020). Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo. China. Ecotoxicology and Environmental Safety, 191, 110157. https://doi.org/10.1016/j.ecoenv.2019.110157

    Article  CAS  Google Scholar 

  • Heidari, M., Darijani, T., & Alipour, V. (2021). Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere, 273, 129656. https://doi.org/10.1016/j.chemosphere.2021.129656

    Article  CAS  Google Scholar 

  • Huang, C. C., Cai, L. M., Xu, Y. H., Luo, J., Chen, L. G., Hu, G. C., Jiang, H. H., Xu, X. B., & Mei, J. X. (2022a). A comprehensive exploration on the health risk quantification assessment of soil potentially toxic elements from different sources around large-scale smelting area. Environment Monitoring and Assessment, 194, 206. https://doi.org/10.1007/s10661-022-09804-0

    Article  CAS  Google Scholar 

  • Huang, C. C., Cai, L. M., Xu, Y. H., Wen, H. H., Jie, L., Hu, G. C., Chen, L. G., Wang, H. Z., Xu, X. B., & Mei, J. X. (2022b). Quantitative analysis of ecological risk and human health risk of potentially toxic elements in farmland soil using the PMF model. Land Degradation & Development, 33, 1954–1967. https://doi.org/10.1002/ldr.4277

    Article  Google Scholar 

  • Huang, Y. C., Luo, X. Y., Yu, L., & Xiao, Z. B. (2021). Formation mechanism and existing form of Sb in heat resistance Mg-Gd-Y-Sb alloy. Journal of Wuhan University of Technology (materials Science), 36(02), 262–268.

    Article  CAS  Google Scholar 

  • Ihl, T., Bautista, F., Cejudo Ruíz, F. R., Delgado, M. D. C., Quintana Owen, P., & Goguitchaichvili, A. (2015). Concentration of toxic elements in topsoils of the metropolitan area of Mexico City: A spatial analysis using ordinary kriging and indicator kriging. Revista Internacional De Contaminacion Ambiental, 31(1), 47–62.

    CAS  Google Scholar 

  • Jayarathne, A., Wijesiri, B., Egodawatta, P., Ayoko, G., & Goonetilleke, A. (2019). Role of adsorption behavior on metal build-up in urban road dust. Journal of Environmental Sciences, 83(09), 85–95. https://doi.org/10.1016/j.jes.2019.03.023

    Article  CAS  Google Scholar 

  • Jiang, H. H., Cai, L. M., Hu, G. C., Wen, H. H., Luo, J., Xu, H. Q., & Chen, L. G. (2021). An integrated exploration on health risk assessment quantification of potentially hazardous elements in soils from the perspective of sources. Ecotoxicology and Environmental Safety, 208, 111489. https://doi.org/10.1016/j.ecoenv.2020.111489

    Article  CAS  Google Scholar 

  • Jiang, H. H., Cai, L. M., Wen, H. H., Hu, G. C., Chen, L. G., & Luo, J. (2020). An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Science of the Total Environment, 701, 134466. https://doi.org/10.1016/j.scitotenv.2021.152653

    Article  CAS  Google Scholar 

  • Khanam, R., Kumar, A., Nayak, A. K., Shahid, M., Tripathi, R., Vijayakumar, S., Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B. S., & Pathak, H. (2020). Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment, 699, 134330. https://doi.org/10.1016/j.scitotenv.2019.134330

    Article  CAS  Google Scholar 

  • Liang, J., Feng, C. T., Zeng, G. M., Gao, X., Zhong, M. Z., Li, X. D., Li, X., He, X. Y., & Fang, Y. L. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environment Pollution, 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057

    Article  CAS  Google Scholar 

  • Liu, S., Zhan, C. L., Zhang, J. Q., Liu, H. X., Xiao, Y. L., Zhang, L., Guo, J. L., Liu, X. L., Xing, X. L., & Cao, J. J. (2020). Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: Human health risk and relationship with black carbon. Ecotoxicology and Environmental Safety, 205, 111155. https://doi.org/10.1016/j.ecoenv.2020.111155

    Article  CAS  Google Scholar 

  • Maedeh, C., Hossein, H. A., Babak, M. Z., Mahdieh, D., & Asghar, M. S. A. (2021). Heavy metals and related properties in farming soils adjacent to a future copper mine, interpretation using GIS, and statistical methods. Arabian Journal of Geosciences, 14(9), 101007. https://doi.org/10.1007/s12517-021-06989-5

    Article  CAS  Google Scholar 

  • MEE (Ministry of Ecology and Environment) (2018). Soil environmental quality Risk control standard for soil contamination of development land (GB36600-2018) [R]. MEE, Beijing (in Chinese).

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of a European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872. https://doi.org/10.1016/j.chemosphere.2006.03.016

    Article  CAS  Google Scholar 

  • Mohsen, H., Tooba, D., & Vali, A. (2021). Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere, 273, 129656. https://doi.org/10.1016/j.chemosphere.2021.129656

    Article  CAS  Google Scholar 

  • Qadeer, A., Saqib, Z. A., Ajmal, Z., Xing, C., Khalil, S. K., Usman, M., Huang, Y. P., Bashir, S., Ahmad, Z., Ahmed, S., Thebo, K. H., & Liu, M. (2020). Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustainable Cities and Society, 53, 101959. https://doi.org/10.1016/j.scs.2019.101959

    Article  Google Scholar 

  • Sabouhi, M., Ali-Taleshi, M. S., Bourliva, A., Nejadkoorki, F., & Squizzato, S. (2020). Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran. Science of the Total Environment, 744, 140762. https://doi.org/10.1016/j.scitotenv.2020.140762

    Article  CAS  Google Scholar 

  • Sabouhi, M., Nejadkoorki, F., Azimzadeh, H. R., & Ali Taleshi, M. S. (2016). Heavy metal pollution in the floor dust of Yazd battery repairing workshops in 2014. Iranian Journal of Health and Environment., 9(1), 127–128.

    Google Scholar 

  • Safiur Rahman, M., Khan, M. D. H., Jolly, Y. N., Kabir, J., Akter, S., & Salam, A. (2019). Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Science of the Total Environment, 660, 1610–1622. https://doi.org/10.1016/j.scitotenv.2018.12.425

    Article  CAS  Google Scholar 

  • Shah, J., Anjum, K. S., Said, M., Rafiq, A., Muhammad, F., Sardar, K., Abdullah, K., & Liaqat, A. (2020). Ecological and health risk assessment of heavy metals in the Hattar industrial estate, Pakistan. Toxin Reviews, 39(1), 68–77. https://doi.org/10.1080/15569543.2018.1478858

    Article  CAS  Google Scholar 

  • Shahab, A. D., Mahin, K., Majid, A., & Mojgan, Y. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety, 163, 153–164. https://doi.org/10.1016/j.ecoenv.2018.07.057

    Article  CAS  Google Scholar 

  • Shi, T. R., & Wang, Y. H. (2021). Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 755, 142367. https://doi.org/10.1016/j.scitotenv.2020.142367

    Article  CAS  Google Scholar 

  • Shiowatana, J., Tantidanai, N., Nookabkaew, S., & Nacapricha, D. (2001). A novel continuous-flow sequential extraction procedure for metal speciation in solids. Journal of Environmental Quality., 30(4), 1195–1205.

    Article  CAS  Google Scholar 

  • Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., & Kermani, M. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723. https://doi.org/10.1016/j.scitotenv.2014.09.097

    Article  CAS  Google Scholar 

  • Stefano, C., Beatrice, M., Dagsson, W. P., Silvia, B., Mirko, S., Rita, T., & David, C. (2021). Potential source contribution function analysis of high latitude dust sources over the Arctic: Preliminary results and prospects. Atmosphere, 12(3), 347. https://doi.org/10.3390/atmos12030347

    Article  CAS  Google Scholar 

  • Vleeschouwer, D. F., Vanneste, H., Mauquoy, D., Piotrowska, N., Torrejon, F., Roland, T., Stein, A., & Le Roux, G. (2014). Emissions from pre-Hispanic metallurgy in the South American atmosphere. PLoS ONE, 9(10), 0111315. https://doi.org/10.1371/journal.pone.0111315

    Article  CAS  Google Scholar 

  • Wang, H. Z., Cai, L. M., Wang, Q. S., Hu, G. C., & Chen, L. G. (2021). A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: A case study from a large Cu smelter in central China. CATENA, 196, 104930. https://doi.org/10.1016/j.catena.2020.104930

    Article  CAS  Google Scholar 

  • Wang, J., Li, S., Cui, X., Li, H., Qian, X., Wang, C., & Sun, Y. (2016). Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicology and Environmental Safety, 128, 161–170. https://doi.org/10.1016/j.ecoenv.2016.02.020

    Article  CAS  Google Scholar 

  • Wang, S., Cai, L. M., Wen, H. H., Luo, J., Wang, Q. S., & Liu, X. (2019). Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Science of the Total Environment, 655, 92–101. https://doi.org/10.1016/j.scitotenv.2018.11.244

    Article  CAS  Google Scholar 

  • Wang, X. S., Qin, Y., & Chen, Y. K. (2006). Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environmental Geology, 50(7), 1061–1066. https://doi.org/10.1007/s00254-006-0278-1

    Article  CAS  Google Scholar 

  • Wang, Y. Z., Duan, X. J., & Wang, L. (2020). Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Science of the Total Environment, 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953

    Article  CAS  Google Scholar 

  • Wen, Y. B., Li, W., Yang, Z. F., Zhang, Q. Z., & Ji, J. F. (2020). Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere, 245, 125620. https://doi.org/10.1016/j.chemosphere.2019.125620

    Article  CAS  Google Scholar 

  • WLHO (Wuhan Local History Office) (2020). Wuhan Publishing House (in Chinese).

  • Xiao, Q., Zong, Y. T., Malik, Z., & Lu, S. G. (2020). Source identification and risk assessment of heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Human and Ecological Risk Assessment: An International Journal., 26(5), 1359–1378. https://doi.org/10.1080/10807039.2019.1578946

    Article  CAS  Google Scholar 

  • Xiao, Y. H., Liu, S. R., Tong, F. C., Kuang, Y. W., Chen, B. F., & Guo, Y. D. (2014). Characteristics and sources of metals in tsp and PM2.5 in an urban forest park at Guangzhou. Atmosphere, 5(4), 775–787. https://doi.org/10.3390/atmos5040775

    Article  CAS  Google Scholar 

  • Yang, S. C., Liu, J. L., Bi, X. Y., Ning, Y. Q., Qiao, S. Y., Yu, Q. Q., & Zhang, J. (2020). Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities. Ecotoxicology and Environmental Safety, 197, 110268. https://doi.org/10.1016/j.ecoenv.2020.110628

    Article  CAS  Google Scholar 

  • Yang, Y. R., Han, X. Z., Liang, Y., Ghosh, A., Chen, J., & Tang, M. (2015). The combined effects of arbuscular mycorrhizal fungi (AMF) and Lead (Pb) Stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia Pseudoacacia L. PLoS ONE, 10(12), 0145726. https://doi.org/10.1371/journal.pone.0145726

    Article  CAS  Google Scholar 

  • Ye, L., Huang, M. J., Zhong, B. Q., Wang, X. M., Tu, Q. L., Sun, H. R., Wang, C., Wu, L. L., & Chang, M. (2018). Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk assessment, and source apportionment. Journal of Environmental Sciences (china), 70, 106–123. https://doi.org/10.1016/j.jes.2017.11.019

    Article  CAS  Google Scholar 

  • Zhao, L. S., Yu, R. L., Yan, Y., Cheng, Y. F., Hu, G. R., & Huang, H. B. (2020). Bioaccessibility and provenance of heavy metals in the park dust in a coastal city of southeast China. Applied Geochemistry, 123, 104798. https://doi.org/10.1016/j.apgeochem.2020.104798

    Article  CAS  Google Scholar 

  • Zhen, X. L., Liu, G., Li, J. H., Xu, H., & Wu, D. (2020). PAHs in road dust of Nanjing Chemical Industry Park, China: Chemical composition, sources, and risk assessment. Journal of Environmental Science and Health, Part A, 55(1), 33–43. https://doi.org/10.1080/10934529.2019.1667166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Project No. 41703108), Science & Technology Project of Education Department, Hubei Province, China (No. D20161301), Training Program of Innovation and Entrepreneurship for Undergraduates of Yangtze University (Yz2020380, Yz2020385), and Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education of China (No. K2021-14).

Funding

This work was supported by the National Natural Science Foundation of China (Project No. 41703108), Science & Technology Project of Education Department, Hubei Province, China (No. D20161301), Training Program of Innovation and Entrepreneurship for Undergraduates of Yangtze University (Yz2020380, Yz2020385), and Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education of China (No. K2021-14).

Author information

Authors and Affiliations

Authors

Contributions

CCH was involved in conceptualization, data analysis, experimentation, data curation and writing original draft. LMC and LGC was responsible for validation, funding acquisition and writing—review and editing. YHX and LJ took part in supervision and writing—review and editing. GCH participated in writing—review and editing. HZW, XBX and JXM contributed to experimentation and data curation. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li-Mei Cai or Lai-Guo Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no financial interests.

Consent for publication

All the authors have consented to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 612 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CC., Cai, LM., Xu, YH. et al. A comprehensive approach to quantify the source identification and human health risk assessment of toxic elements in park dust. Environ Geochem Health 45, 5813–5827 (2023). https://doi.org/10.1007/s10653-023-01588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01588-7

Keywords

Navigation