Abstract
Elevated heavy metal(loid)s concentrations in water lower its quality posing a threat to consumers. This study aims to assess the human health risk caused by heavy metal(loid)s in tap water in Santa Rosa city, Ecuador, and the ecological risk of stream water and sediments in the Santa Rosa River. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were evaluated in tap waters, stream waters, and sediment samples during the rainy and dry seasons. The Metal Index (MI), Geo-accumulation Index (Igeo), Potential Ecological Risk Index (PERI), and the levels of carcinogenic (CR) and non-carcinogenic risk (HQ) were determined. The results revealed severe pollution levels, mainly in Los Gringos and El Panteon streams, both tributaries of the Santa Rosa River, the primary water source for Santa Rosa inhabitants. More than 20% of the surface water samples showed severe contamination (MI > 6), and 90% of the tap water samples presented a MI value between 1 and 4, which indicates slight to moderate pollution. Drinking water displayed high levels of As, with 83% of the tap water samples collected from households in the dry season above the recommended concentration set by the World Health Organization and Ecuadorian legislation. The Igeo-Cd in the sediment samples was significantly high (Igeo > 3), and the PERI showed very high ecological risk (PERI > 600), with Cd as the main pollutant. HQ and CR were above the safe exposure threshold, suggesting that residents are at risk from tap water consumption, with As being the primary concern.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability statement
The data supporting the findings of this study are available upon reasonable request from the authors.
References
Alarcón-Herrera, M. T., Martin-Alarcon, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A., & Bundschuh, J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 698, 134168. https://doi.org/10.1016/j.scitotenv.2019.134168
Alonso, D. L., Pérez, R., Okio, C. K. Y. A., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo Colombia. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2020.110478
Angamarca, D., & Valarezo, L. (2020). Determinación de la contaminación del recurso hídrico provocado por la actividad minera en la cuenca alta del Río Santa Rosa, provincia de El Oro. Universidad Politécnica Salesiana. Retrieved from https://dspace.ups.edu.ec/bitstream/123456789/19334/1/UPS-CT008839.pdf
Appleton, J. D., Williams, T. M., Orbea, H., & Carrasco, M. (2001). Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water, Air, and Soil Pollution, 131(1–4), 19–39. https://doi.org/10.1023/A:1011965430757
Barrio-Parra, F., Serrano García, H., Izquierdo-Díaz, M., & De Miguel, E. (2023). Exposure factors vs bioaccessibility in the soil-and-dust ingestion pathway: A comparative assessment of uncertainties using MC2D Simulations in an Arsenic Exposure Scenario. Exposure and Health. https://doi.org/10.1007/s12403-022-00533-w
Beata, J., Ryszard, K., & Michał, M. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination: A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z
Bundschuh, J, García, M., Birkle, P., Cumbal, L., Bhattacharya, P., & Matschullat, J. (2009). Natural arsenic in groundwaters of Latin America - Occurrence, health impact and remediation. Natural Arsenic in Groundwaters of Latin America.
Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., et al. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024
Cai, Y., Zhang, H., Yuan, G., & Li, F. (2017). Sources, speciation and transformation of arsenic in the gold mining impacted Jiehe River, China. Applied Geochemistry, 84, 254–261. https://doi.org/10.1016/j.apgeochem.2017.07.001
Carling, G. T., Diaz, X., Ponce, M., Perez, L., Nasimba, L., Pazmino, E., et al. (2013). Particulate and dissolved trace element concentrations in three southern Ecuador rivers impacted by artisanal gold mining. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-012-1415-y
Chen, M., Li, F., Tao, M., Hu, L., Shi, Y., & Liu, Y. (2019). Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Marine Pollution Bulletin, 146(March), 893–899. https://doi.org/10.1016/j.marpolbul.2019.07.029
Cipriani-Avila, I., Molinero, J., Jara-Negrete, E., Barrado, M., Arcos, C., Mafla, S., et al. (2020). Heavy metal assessment in drinking waters of Ecuador: Quito, Ibarra and Guayaquil. Journal of Water and Health, 18(6), 1050–1064. https://doi.org/10.2166/wh.2020.093
Cui, Y., Chen, J., Zhang, Y., Peng, D., Huang, T., & Sun, C. (2019). pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16112046
Deng, Q., Wei, Y., Yin, J., Chen, L., Peng, C., Wang, X., & Zhu, K. (2020). Ecological risk of human health in sediments in a karstic river basin with high longevity population. Environmental Pollution, 265, 114418. https://doi.org/10.1016/j.envpol.2020.114418
Elmayel, I., Esbrí, J. M., García-Ordiales, E., Elouaer, Z., Garcia-Noguero, E. M., Bouzid, J., et al. (2020). Biogeochemical assessment of the impact of Zn mining activity in the area of the Jebal Trozza mine. Central Tunisia: Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00595-2
Escobar-Segovia, K., Jiménez-Oyola, S., Garcés-León, D., Paz-Barzola, D., Chavez, E., Romero-Crespo, P., & Salgado, B. (2021). Heavy Metals in Rivers Affected By Mining Activities in Ecuador: Pollution and Human Health Implications. Sustainable Water Resources Management XI : Effective Approaches for River Basins and Urban Catchments, 1, 61–72. https://doi.org/10.2495/wrm210061
Fano, D., Vásquez-Velásquez, C., Aguilar, J., Gribble, M. O., Wickliffe, J. K., Lichtveld, M. Y., et al. (2020). Arsenic concentrations in household drinking water: A cross-sectional survey of pregnant Women in Tacna, Peru, 2019. Exposure and Health, 12(4), 555–560. https://doi.org/10.1007/s12403-019-00337-5
Garrido, A. E., Strosnider, W. H. J., Wilson, R. T., Condori, J., & Nairn, R. W. (2017). Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Environmental Geochemistry and Health, 39(3), 681–700. https://doi.org/10.1007/s10653-017-9943-4
Githaiga, K. B., Njuguna, S. M., Gituru, R. W., & Yan, X. (2021). Assessing heavy metal contamination in soils using improved weighted index (IWI) and their associated human health risks in urban, wetland, and agricultural soils. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15404-1
Gómez-Álvarez, A., Valenzuela-García, J. L., Meza-Figueroa, D., & de la O-Villanueva, M., Ramírez-Hernández, J., Almendariz-Tapia, J., & Pérez-Segura, E. (2011). Impact of mining activities on sediments in a semi-arid environment: San Pedro River, Sonora. Mexico. Applied Geochemistry, 26(12), 2101–2112. https://doi.org/10.1016/j.apgeochem.2011.07.008
González-Valoys, A. C., Jiménez Salgado, J. U., Rodríguez, R., Monteza-Destro, T., Vargas-Lombardo, M., García-Noguero, E. M., et al. (2021). An approach for evaluating the bioavailability and risk assessment of potentially toxic elements using edible and inedible plants—the Remance (Panama) mining area as a model. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01086-8
Hadzi, G. Y., Ayoko, G. A., Essumang, D. K., & Osae, S. K. D. (2019). Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41(6), 2821–2843. https://doi.org/10.1007/s10653-019-00332-4
Haghnazar, H., Hudson-edwards, K. A., Kumar, V., Pourakbar, M., Mahdavianpour, M., & Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River , Iran : Appraisal of phytoremediation capability. Chemosphere, 285(July).
Hakanson, L. (1980). An Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 43. https://doi.org/10.1016/0043-1354(80)90143-8
IARC. (2004). Some drinking-water disinfectants and contaminants, including arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans / World Health Organization, International Agency for Research on Cancer, 84, 1–477.
INEC. (2010). Censo Ecuador 2010. Inec, 45.
INEN. (2020). Norma Técnica Ecuatoriana INEN 1108 Sexta revisión - Agua para consumo humano. Quito - Ecuador.
INHAMI. (2022). Instituto Nacional de Meteorología e Hidrología | Ecuador. https://inamhi.wixsite.com/inamhi/novedades. Accessed 2 February 2022
Jiménez-Córdova, M. I., Sánchez-Peña, L. C., Barrera-Hernández, Á., González-Horta, C., Barbier, O. C., & Del Razo, L. M. (2019). Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. Science of the Total Environment, 684, 621–628. https://doi.org/10.1016/j.scitotenv.2019.05.356
Jiménez-Oyola, S., Chavez, E., García-Martínez, M.-J., Ortega, M. F., Bolonio, D., Guzmán-Martínez, F., et al. (2021a). Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicology and Environmental Safety, 224(May), 112629. https://doi.org/10.1016/j.ecoenv.2021.112629
Jiménez-Oyola, S., García-Martínez, M.-J., Ortega, M., Chavez, E., Romero, P., Garcia-Garizabal, I., & Bolonio, D. (2021b). Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00935-w
Kayser, G. L., Amjad, U., Dalcanale, F., Bartram, J., & Bentley, M. E. (2015). Drinking water quality governance: A comparative case study of Brazil, Ecuador, and Malawi. Environmental Science and Policy, 48, 186–195. https://doi.org/10.1016/j.envsci.2014.12.019
Khelifi, F., Melki, A., Hamed, Y., Adamo, P., & Caporale, A. G. (2019). Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00434-z
Kolawole, T. O., Olatunji, S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy Metal Contamination and Ecological Risk Assessment in Soils and Sediments of an Industrial Area in Southwestern Nigeria. Journal of Health and Pollution, 8(19).
Kumar, S., Islam, A. R. M. T., Hasanuzzaman, M., Salam, R., Islam, M. S., Khan, R., et al. (2022). Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-18734-w
Kusin, F. M., Awang, N. H., Hasan, S. N. M., Rahim, H. A., Azmin, N., Jusop, S., & Kim, K. (2019). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. CATENA, 183(August), 104229. https://doi.org/10.1016/j.catena.2019.104229
Li, J., Chen, Y., Lu, H., & Zhai, W. (2021). Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. Environmental Science and Pollution Research, 28(18), 22804–22822. https://doi.org/10.1007/s11356-020-12212-x
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090
Limón-Pacheco, J. H., Jiménez-Córdova, M. I., Cárdenas-González, M., Sánchez Retana, I. M., Gonsebatt, M. E., & Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Annals of Global Health, 84(2), 257–273. https://doi.org/10.29024/aogh.913
Mañay, N., Goso, C., Pistón, M., Fernández-Turiel, J., García-Vallés, M., Rejas, M., & Guerequiz, R. (2013). Groundwater Arsenic Content in Raigón Aquifer System, San Jose, Uruguay. Revista SUG. Sociedad Uruguaya De Geología, 38, 20–38.
McDowell, R. W., Taylor, M. D., & Stevenson, B. A. (2013). Natural background and anthropogenic contributions of cadmium to New Zealand soils. Agriculture, Ecosystems and Environment, 165, 80–87. https://doi.org/10.1016/j.agee.2012.12.011
Meharg, A., & Raab, A. (2010). Getting to the bottom of arsenic standards and guidelines. Environmental Science and Technology, 44(12), 4395–4399. https://doi.org/10.1021/es9034304
Méndez, D., Guzmán-Martínez, F., Acosta, M., Collahuazo, L., Ibarra, D., Lalangui, L., & Jiménez-Oyola, S. (2022). Use of tailings as a substitute for sand in concrete blocks production: gravimetric mining wastes as a case study. Sustainability (switzerland). https://doi.org/10.3390/su142316285
Mestanza-Ramón, C., Cuenca-Cumbicus, J., D’orio, G., Flores-Toala, J., Segovia-Cáceres, S., Bonilla-Bonilla, A., & Straface, S. (2022a). Gold mining in the amazon region of Ecuador: History and a review of its socio-environmental impacts. Land, 11(2), 1–22. https://doi.org/10.3390/land11020221
Mestanza-Ramón, C., Ordoñez-Alcivar, R., Arguello-Guadalupe, C., Carrera-Silva, K., D’orio, G., & Straface, S. (2022b). History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador. International Journal of Environmental Research and Public Health,. https://doi.org/10.3390/ijerph19031190
Moiseenko, T. I., Dinu, M. I., Gashkina, N. A., & Kremleva, T. A. (2019). Aquatic environment and anthropogenic factor effects on distribution of trace elements in surface waters of European Russia and Western Siberia. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab17ea
Moore, F., Esmaeili, K., & Keshavarzi, B. (2011). Assessment of heavy metals contamination in stream water and sediments affected by the Sungun Porphyry Copper Deposit, East Azerbaijan Province, Northwest Iran. Water Quality, Exposure and Health, 3(1), 37–49. https://doi.org/10.1007/s12403-011-0042-y
Moriarity, R. J., Tsuji, L. J. S., & Liberda, E. N. (2022). A probabilistic hazard and risk assessment of exposure to metals and organohalogens associated with a traditional diet in the Indigenous communities of Eeyou Istchee (northern Quebec, Canada). Environmental Science and Pollution Research, (0123456789). https://doi.org/10.1007/s11356-022-23117-2
MSP. (2021). Ministerio de Salud Pública. Salud en Cifras. https://www.salud.gob.ec/salud-en-cifras/. Accessed 19 May 2022
Muller, G. (1969). Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal, 2, 108–118.
Navoni, J. A., De Pietri, D., Olmos, V., Gimenez, C., BoviMitre, G., de Titto, E., & VillaamilLepori, E. C. (2014). Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina. Science of the Total Environment, 499, 166–174. https://doi.org/10.1016/j.scitotenv.2014.08.058
Ngole-Jeme, V. M., & Fantke, P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE. https://doi.org/10.1371/journal.pone.0172517
Pan, L., Fang, G., Wang, Y., Wang, L., Su, B., Li, D., & Xiang, B. (2018). Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, miyun reservoir, China. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph15112364
PRODEMINCA. (1998). Monitoreo Ambiental de las areas mineras en el sur del Ecuador. Ministerio de Energía y Minas.
R Core Team. (2020). R: a language and environment for statistical computing. Austria.
Rahman, M. A., Rahman, A., Khan, M. Z. K., & Renzaho, A. M. N. (2018). Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicology and Environmental Safety, 150(June 2017), 335–343. https://doi.org/10.1016/j.ecoenv.2017.12.032
RAIS. (2022). Toxicity profiles. Risk Assessment Information System. http://rais.ornl.gov. Accessed 2 July 2022
Rapant, S., Dietzová, Z., & Cicmanová, S. (2006). Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environmental Geology, 51(3), 387–397. https://doi.org/10.1007/s00254-006-0334-x
Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental GeOchemistry and Health, 42(8), 2573–2594.
Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78. https://doi.org/10.1016/j.jenvman.2016.10.023
Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., Ali, S., Rizwan, M., et al. (2017). Human health implications, risk assessment and remediation of As-contaminated water: A critical review. Science of the Total Environment, 601–602, 756–769. https://doi.org/10.1016/j.scitotenv.2017.05.223
Shaw, D. (2006). Mobility of arsenic in saturated, laboratory test sediments under varying pH conditions. Engineering Geology, 85(1–2), 158–164. https://doi.org/10.1016/j.enggeo.2005.09.035
Shokoohi, R., Khazaei, M., Karami, M., Seidmohammadi, A., Berijani, N., Khotanlou, H., & Torkshavand, Z. (2021). The relationship between chronic exposure to arsenic through drinking water and hearing function in exposed population aged 10–49 years: A cross-sectional study. Ecotoxicology and Environmental Safety, 211(September 2020), 111939. https://doi.org/10.1016/j.ecoenv.2021.111939
Sierra, C., Ruíz-Barzola, O., Menéndez, M., Demey, J. R., & Vicente-Villardón, J. L. (2017). Geochemical interactions study in surface river sediments at an artisanal mining area by means of Canonical (MANOVA)-Biplot. Journal of Geochemical Exploration, 175, 72–81. https://doi.org/10.1016/j.gexplo.2017.01.002
Smith, J., Sheridan, C., van Dyk, L., & Harding, K. G. (2022). Critical evaluation of the chemical composition of acid mine drainage for the development of statistical correlations linking electrical conductivity with acid mine drainage concentrations. Environmental Advances, 8(April), 100241. https://doi.org/10.1016/j.envadv.2022.100241
Spence, L., & Walden, T. (2001). RISC4 User’s Manual. California.
Sun, Z., Xie, X., Wang, P., Hu, Y., & Cheng, H. (2018). Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Science of the Total Environment, 639, 217–227. https://doi.org/10.1016/j.scitotenv.2018.05.176
Swartjes, F. A. (2011). Dealing with contaminated soils. From Theory towards Practical Application. (F. A. Swartjes, Ed.)Springer. https://doi.org/10.1111/j.1475-2743.1991.tb00867.x
Tamasi, G., & Cini, R. (2004). Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. The Science of the Total Environment, 327(1–3), 41–51. https://doi.org/10.1016/j.scitotenv.2003.10.011
Tarras-Wahlberg, N., Flachier, A., Fredriksson, G., Lane, S., Lundberg, B., & Sangfors, O. (2000). Environmental Impact of Small-scale and Artisanal Gold Mining in Southern Ecuador. AMBIO: A Journal of the Human Environment, 29(8), 484–491. https://doi.org/10.1579/0044-7447-29.8.484
Tran, T. S., Dinh, V. C., Nguyen, T. A. H., & Kim, K. W. (2022). Soil contamination and health risk assessment from heavy metals exposure near mining area in Bac Kan province. Vietnam. Environmental Geochemistry and Health, 44(4), 1189–1202. https://doi.org/10.1007/s10653-021-01168-7
TULSMA. (2015). Texto Unificado de Legislación Secundaria Medio Ambiental. Ministerio de Ambiente de Ecuador. Quito.
UNDP. (2022). Sustainable development goals | United Nations Development Programme. https://www.undp.org/sustainable-development-goals. Accessed 3 February 2022
USEPA. (2001). Risk assessment guidance for superfund (RAGS) Volume III (Part A). Process for conducting probabilistic risk assessment (Vol. 3). Washington, DC. http://www.epa.gov/sites/production/files/2015-09/documents/rags3adt_complete.pdf
USEPA. (2013). ProUCL Version 5.0.00 User Guide. Statistical software for environmental applications for data sets with and without nondetect observations. USEPA Publication. papers2://publication/uuid/248605E5-EF35–437B-85D0–244A7BCD6DBB
Weiss, F. T., Leuzinger, M., Zurbrügg, C., & Eggen, R. I. L. (2016). Chapter 4: Mining Industry Pollutants. Chemical Pollution in Low and middle Income Countries, 67–101.
WHO. (2017). Guidelines for drinking-water quality, fourth edition incorporating The First Addendum.
WHO. (2018). Arsenic primer. Guidance on the investigation & mitigation of arsenic contamination. New York. http://www.unicef.org/wes
Withanachchi, S. S., Ghambashidze, G., Kunchulia, I., Urushadze, T., Ploeger, A., River, M., & Withanachchi, S. S. (2018). Water quality in surface water: A preliminary assessment of heavy metal contamination of the Mashavera river, Georgia. International Journal of Environmental Research and Public Health, 15(4), 1–25. https://doi.org/10.3390/ijerph15040621
Zheng, L., Zhou, Z., Rao, M., & Sun, Z. (2020). Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China. Environmental Geochemistry and Health, 42(5), 1401–1413. https://doi.org/10.1007/s10653-019-00428-x
Zhou, Y. (2018). Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment. Science of the Total Environmental, 616–617, 156–163. https://doi.org/10.1016/j.scitotenv.2017.10.232
Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061
Acknowledgements
The authors thank Prof. Erik Smolders and Dr. Ruth Vanderschueren from Soil and Water Division at KU Leuven for their contribution to chemical analyses.
Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
Samantha Jiménez-Oyola: Conceptualization, Methodology, Writing - Original draft preparation. Priscila E. Valverde-Armas: Methodology, Formal analysis, Writing - Reviewing and Editing. Paola Romero: Project administration, Reviewing and Editing. Diego Capa: Data curation and Investigation. Abner Valdivieso: Data curation and Investigation. Jonathan Coronel-León: Writing - Reviewing and Editing. Fredy Guzmán-Martínez: Writing - Reviewing and Editing. Eduardo Chavez: Conceptualization, Resources, Writing - Reviewing and Editing. All authors reviewed the manuscript
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Ethics statement
The study did not involve testing on humans or animals.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jiménez-Oyola, S., Valverde-Armas, P.E., Romero-Crespo, P. et al. Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk. Environ Geochem Health 45, 4929–4949 (2023). https://doi.org/10.1007/s10653-023-01546-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-023-01546-3