Skip to main content
Log in

Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Elevated heavy metal(loid)s concentrations in water lower its quality posing a threat to consumers. This study aims to assess the human health risk caused by heavy metal(loid)s in tap water in Santa Rosa city, Ecuador, and the ecological risk of stream water and sediments in the Santa Rosa River. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were evaluated in tap waters, stream waters, and sediment samples during the rainy and dry seasons. The Metal Index (MI), Geo-accumulation Index (Igeo), Potential Ecological Risk Index (PERI), and the levels of carcinogenic (CR) and non-carcinogenic risk (HQ) were determined. The results revealed severe pollution levels, mainly in Los Gringos and El Panteon streams, both tributaries of the Santa Rosa River, the primary water source for Santa Rosa inhabitants. More than 20% of the surface water samples showed severe contamination (MI > 6), and 90% of the tap water samples presented a MI value between 1 and 4, which indicates slight to moderate pollution. Drinking water displayed high levels of As, with 83% of the tap water samples collected from households in the dry season above the recommended concentration set by the World Health Organization and Ecuadorian legislation. The Igeo-Cd in the sediment samples was significantly high (Igeo > 3), and the PERI showed very high ecological risk (PERI > 600), with Cd as the main pollutant. HQ and CR were above the safe exposure threshold, suggesting that residents are at risk from tap water consumption, with As being the primary concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement

The data supporting the findings of this study are available upon reasonable request from the authors.

References

  • Alarcón-Herrera, M. T., Martin-Alarcon, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A., & Bundschuh, J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 698, 134168. https://doi.org/10.1016/j.scitotenv.2019.134168

    Article  CAS  Google Scholar 

  • Alonso, D. L., Pérez, R., Okio, C. K. Y. A., & Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurbán paramo Colombia. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2020.110478

    Article  Google Scholar 

  • Angamarca, D., & Valarezo, L. (2020). Determinación de la contaminación del recurso hídrico provocado por la actividad minera en la cuenca alta del Río Santa Rosa, provincia de El Oro. Universidad Politécnica Salesiana. Retrieved from https://dspace.ups.edu.ec/bitstream/123456789/19334/1/UPS-CT008839.pdf

  • Appleton, J. D., Williams, T. M., Orbea, H., & Carrasco, M. (2001). Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water, Air, and Soil Pollution, 131(1–4), 19–39. https://doi.org/10.1023/A:1011965430757

    Article  CAS  Google Scholar 

  • Barrio-Parra, F., Serrano García, H., Izquierdo-Díaz, M., & De Miguel, E. (2023). Exposure factors vs bioaccessibility in the soil-and-dust ingestion pathway: A comparative assessment of uncertainties using MC2D Simulations in an Arsenic Exposure Scenario. Exposure and Health. https://doi.org/10.1007/s12403-022-00533-w

    Article  Google Scholar 

  • Beata, J., Ryszard, K., & Michał, M. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination: A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Bundschuh, J, García, M., Birkle, P., Cumbal, L., Bhattacharya, P., & Matschullat, J. (2009). Natural arsenic in groundwaters of Latin America - Occurrence, health impact and remediation. Natural Arsenic in Groundwaters of Latin America.

  • Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., et al. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024

    Article  CAS  Google Scholar 

  • Cai, Y., Zhang, H., Yuan, G., & Li, F. (2017). Sources, speciation and transformation of arsenic in the gold mining impacted Jiehe River, China. Applied Geochemistry, 84, 254–261. https://doi.org/10.1016/j.apgeochem.2017.07.001

    Article  CAS  Google Scholar 

  • Carling, G. T., Diaz, X., Ponce, M., Perez, L., Nasimba, L., Pazmino, E., et al. (2013). Particulate and dissolved trace element concentrations in three southern Ecuador rivers impacted by artisanal gold mining. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-012-1415-y

    Article  Google Scholar 

  • Chen, M., Li, F., Tao, M., Hu, L., Shi, Y., & Liu, Y. (2019). Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Marine Pollution Bulletin, 146(March), 893–899. https://doi.org/10.1016/j.marpolbul.2019.07.029

    Article  CAS  Google Scholar 

  • Cipriani-Avila, I., Molinero, J., Jara-Negrete, E., Barrado, M., Arcos, C., Mafla, S., et al. (2020). Heavy metal assessment in drinking waters of Ecuador: Quito, Ibarra and Guayaquil. Journal of Water and Health, 18(6), 1050–1064. https://doi.org/10.2166/wh.2020.093

    Article  Google Scholar 

  • Cui, Y., Chen, J., Zhang, Y., Peng, D., Huang, T., & Sun, C. (2019). pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16112046

    Article  Google Scholar 

  • Deng, Q., Wei, Y., Yin, J., Chen, L., Peng, C., Wang, X., & Zhu, K. (2020). Ecological risk of human health in sediments in a karstic river basin with high longevity population. Environmental Pollution, 265, 114418. https://doi.org/10.1016/j.envpol.2020.114418

    Article  CAS  Google Scholar 

  • Elmayel, I., Esbrí, J. M., García-Ordiales, E., Elouaer, Z., Garcia-Noguero, E. M., Bouzid, J., et al. (2020). Biogeochemical assessment of the impact of Zn mining activity in the area of the Jebal Trozza mine. Central Tunisia: Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00595-2

    Book  Google Scholar 

  • Escobar-Segovia, K., Jiménez-Oyola, S., Garcés-León, D., Paz-Barzola, D., Chavez, E., Romero-Crespo, P., & Salgado, B. (2021). Heavy Metals in Rivers Affected By Mining Activities in Ecuador: Pollution and Human Health Implications. Sustainable Water Resources Management XI : Effective Approaches for River Basins and Urban Catchments, 1, 61–72. https://doi.org/10.2495/wrm210061

    Article  Google Scholar 

  • Fano, D., Vásquez-Velásquez, C., Aguilar, J., Gribble, M. O., Wickliffe, J. K., Lichtveld, M. Y., et al. (2020). Arsenic concentrations in household drinking water: A cross-sectional survey of pregnant Women in Tacna, Peru, 2019. Exposure and Health, 12(4), 555–560. https://doi.org/10.1007/s12403-019-00337-5

    Article  CAS  Google Scholar 

  • Garrido, A. E., Strosnider, W. H. J., Wilson, R. T., Condori, J., & Nairn, R. W. (2017). Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Environmental Geochemistry and Health, 39(3), 681–700. https://doi.org/10.1007/s10653-017-9943-4

    Article  CAS  Google Scholar 

  • Githaiga, K. B., Njuguna, S. M., Gituru, R. W., & Yan, X. (2021). Assessing heavy metal contamination in soils using improved weighted index (IWI) and their associated human health risks in urban, wetland, and agricultural soils. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15404-1

    Article  Google Scholar 

  • Gómez-Álvarez, A., Valenzuela-García, J. L., Meza-Figueroa, D., & de la O-Villanueva, M., Ramírez-Hernández, J., Almendariz-Tapia, J., & Pérez-Segura, E. (2011). Impact of mining activities on sediments in a semi-arid environment: San Pedro River, Sonora. Mexico. Applied Geochemistry, 26(12), 2101–2112. https://doi.org/10.1016/j.apgeochem.2011.07.008

    Article  CAS  Google Scholar 

  • González-Valoys, A. C., Jiménez Salgado, J. U., Rodríguez, R., Monteza-Destro, T., Vargas-Lombardo, M., García-Noguero, E. M., et al. (2021). An approach for evaluating the bioavailability and risk assessment of potentially toxic elements using edible and inedible plants—the Remance (Panama) mining area as a model. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01086-8

    Article  Google Scholar 

  • Hadzi, G. Y., Ayoko, G. A., Essumang, D. K., & Osae, S. K. D. (2019). Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41(6), 2821–2843. https://doi.org/10.1007/s10653-019-00332-4

    Article  CAS  Google Scholar 

  • Haghnazar, H., Hudson-edwards, K. A., Kumar, V., Pourakbar, M., Mahdavianpour, M., & Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River , Iran : Appraisal of phytoremediation capability. Chemosphere, 285(July).

  • Hakanson, L. (1980). An Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 43. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • IARC. (2004). Some drinking-water disinfectants and contaminants, including arsenic. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans / World Health Organization, International Agency for Research on Cancer, 84, 1–477.

    Google Scholar 

  • INEC. (2010). Censo Ecuador 2010. Inec, 45.

  • INEN. (2020). Norma Técnica Ecuatoriana INEN 1108 Sexta revisión - Agua para consumo humano. Quito - Ecuador.

  • INHAMI. (2022). Instituto Nacional de Meteorología e Hidrología | Ecuador. https://inamhi.wixsite.com/inamhi/novedades. Accessed 2 February 2022

  • Jiménez-Córdova, M. I., Sánchez-Peña, L. C., Barrera-Hernández, Á., González-Horta, C., Barbier, O. C., & Del Razo, L. M. (2019). Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. Science of the Total Environment, 684, 621–628. https://doi.org/10.1016/j.scitotenv.2019.05.356

    Article  CAS  Google Scholar 

  • Jiménez-Oyola, S., Chavez, E., García-Martínez, M.-J., Ortega, M. F., Bolonio, D., Guzmán-Martínez, F., et al. (2021a). Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicology and Environmental Safety, 224(May), 112629. https://doi.org/10.1016/j.ecoenv.2021.112629

    Article  CAS  Google Scholar 

  • Jiménez-Oyola, S., García-Martínez, M.-J., Ortega, M., Chavez, E., Romero, P., Garcia-Garizabal, I., & Bolonio, D. (2021b). Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00935-w

    Article  Google Scholar 

  • Kayser, G. L., Amjad, U., Dalcanale, F., Bartram, J., & Bentley, M. E. (2015). Drinking water quality governance: A comparative case study of Brazil, Ecuador, and Malawi. Environmental Science and Policy, 48, 186–195. https://doi.org/10.1016/j.envsci.2014.12.019

    Article  Google Scholar 

  • Khelifi, F., Melki, A., Hamed, Y., Adamo, P., & Caporale, A. G. (2019). Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00434-z

    Article  Google Scholar 

  • Kolawole, T. O., Olatunji, S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy Metal Contamination and Ecological Risk Assessment in Soils and Sediments of an Industrial Area in Southwestern Nigeria. Journal of Health and Pollution, 8(19).

  • Kumar, S., Islam, A. R. M. T., Hasanuzzaman, M., Salam, R., Islam, M. S., Khan, R., et al. (2022). Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-18734-w

    Article  Google Scholar 

  • Kusin, F. M., Awang, N. H., Hasan, S. N. M., Rahim, H. A., Azmin, N., Jusop, S., & Kim, K. (2019). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. CATENA, 183(August), 104229. https://doi.org/10.1016/j.catena.2019.104229

    Article  CAS  Google Scholar 

  • Li, J., Chen, Y., Lu, H., & Zhai, W. (2021). Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. Environmental Science and Pollution Research, 28(18), 22804–22822. https://doi.org/10.1007/s11356-020-12212-x

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Limón-Pacheco, J. H., Jiménez-Córdova, M. I., Cárdenas-González, M., Sánchez Retana, I. M., Gonsebatt, M. E., & Del Razo, L. M. (2018). Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Annals of Global Health, 84(2), 257–273. https://doi.org/10.29024/aogh.913

  • Mañay, N., Goso, C., Pistón, M., Fernández-Turiel, J., García-Vallés, M., Rejas, M., & Guerequiz, R. (2013). Groundwater Arsenic Content in Raigón Aquifer System, San Jose, Uruguay. Revista SUG. Sociedad Uruguaya De Geología, 38, 20–38.

    Google Scholar 

  • McDowell, R. W., Taylor, M. D., & Stevenson, B. A. (2013). Natural background and anthropogenic contributions of cadmium to New Zealand soils. Agriculture, Ecosystems and Environment, 165, 80–87. https://doi.org/10.1016/j.agee.2012.12.011

    Article  CAS  Google Scholar 

  • Meharg, A., & Raab, A. (2010). Getting to the bottom of arsenic standards and guidelines. Environmental Science and Technology, 44(12), 4395–4399. https://doi.org/10.1021/es9034304

    Article  CAS  Google Scholar 

  • Méndez, D., Guzmán-Martínez, F., Acosta, M., Collahuazo, L., Ibarra, D., Lalangui, L., & Jiménez-Oyola, S. (2022). Use of tailings as a substitute for sand in concrete blocks production: gravimetric mining wastes as a case study. Sustainability (switzerland). https://doi.org/10.3390/su142316285

    Article  Google Scholar 

  • Mestanza-Ramón, C., Cuenca-Cumbicus, J., D’orio, G., Flores-Toala, J., Segovia-Cáceres, S., Bonilla-Bonilla, A., & Straface, S. (2022a). Gold mining in the amazon region of Ecuador: History and a review of its socio-environmental impacts. Land, 11(2), 1–22. https://doi.org/10.3390/land11020221

    Article  Google Scholar 

  • Mestanza-Ramón, C., Ordoñez-Alcivar, R., Arguello-Guadalupe, C., Carrera-Silva, K., D’orio, G., & Straface, S. (2022b). History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador. International Journal of Environmental Research and Public Health,. https://doi.org/10.3390/ijerph19031190

  • Moiseenko, T. I., Dinu, M. I., Gashkina, N. A., & Kremleva, T. A. (2019). Aquatic environment and anthropogenic factor effects on distribution of trace elements in surface waters of European Russia and Western Siberia. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab17ea

    Article  Google Scholar 

  • Moore, F., Esmaeili, K., & Keshavarzi, B. (2011). Assessment of heavy metals contamination in stream water and sediments affected by the Sungun Porphyry Copper Deposit, East Azerbaijan Province, Northwest Iran. Water Quality, Exposure and Health, 3(1), 37–49. https://doi.org/10.1007/s12403-011-0042-y

    Article  CAS  Google Scholar 

  • Moriarity, R. J., Tsuji, L. J. S., & Liberda, E. N. (2022). A probabilistic hazard and risk assessment of exposure to metals and organohalogens associated with a traditional diet in the Indigenous communities of Eeyou Istchee (northern Quebec, Canada). Environmental Science and Pollution Research, (0123456789). https://doi.org/10.1007/s11356-022-23117-2

  • MSP. (2021). Ministerio de Salud Pública. Salud en Cifras. https://www.salud.gob.ec/salud-en-cifras/. Accessed 19 May 2022

  • Muller, G. (1969). Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Navoni, J. A., De Pietri, D., Olmos, V., Gimenez, C., BoviMitre, G., de Titto, E., & VillaamilLepori, E. C. (2014). Human health risk assessment with spatial analysis: Study of a population chronically exposed to arsenic through drinking water from Argentina. Science of the Total Environment, 499, 166–174. https://doi.org/10.1016/j.scitotenv.2014.08.058

    Article  CAS  Google Scholar 

  • Ngole-Jeme, V. M., & Fantke, P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE. https://doi.org/10.1371/journal.pone.0172517

    Article  Google Scholar 

  • Pan, L., Fang, G., Wang, Y., Wang, L., Su, B., Li, D., & Xiang, B. (2018). Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, miyun reservoir, China. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph15112364

    Article  Google Scholar 

  • PRODEMINCA. (1998). Monitoreo Ambiental de las areas mineras en el sur del Ecuador. Ministerio de Energía y Minas.

  • R Core Team. (2020). R: a language and environment for statistical computing. Austria.

    Google Scholar 

  • Rahman, M. A., Rahman, A., Khan, M. Z. K., & Renzaho, A. M. N. (2018). Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicology and Environmental Safety, 150(June 2017), 335–343. https://doi.org/10.1016/j.ecoenv.2017.12.032

    Article  CAS  Google Scholar 

  • RAIS. (2022). Toxicity profiles. Risk Assessment Information System. http://rais.ornl.gov. Accessed 2 July 2022

  • Rapant, S., Dietzová, Z., & Cicmanová, S. (2006). Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environmental Geology, 51(3), 387–397. https://doi.org/10.1007/s00254-006-0334-x

    Article  CAS  Google Scholar 

  • Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental GeOchemistry and Health, 42(8), 2573–2594.

    Article  CAS  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78. https://doi.org/10.1016/j.jenvman.2016.10.023

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., Ali, S., Rizwan, M., et al. (2017). Human health implications, risk assessment and remediation of As-contaminated water: A critical review. Science of the Total Environment, 601–602, 756–769. https://doi.org/10.1016/j.scitotenv.2017.05.223

    Article  CAS  Google Scholar 

  • Shaw, D. (2006). Mobility of arsenic in saturated, laboratory test sediments under varying pH conditions. Engineering Geology, 85(1–2), 158–164. https://doi.org/10.1016/j.enggeo.2005.09.035

    Article  Google Scholar 

  • Shokoohi, R., Khazaei, M., Karami, M., Seidmohammadi, A., Berijani, N., Khotanlou, H., & Torkshavand, Z. (2021). The relationship between chronic exposure to arsenic through drinking water and hearing function in exposed population aged 10–49 years: A cross-sectional study. Ecotoxicology and Environmental Safety, 211(September 2020), 111939. https://doi.org/10.1016/j.ecoenv.2021.111939

  • Sierra, C., Ruíz-Barzola, O., Menéndez, M., Demey, J. R., & Vicente-Villardón, J. L. (2017). Geochemical interactions study in surface river sediments at an artisanal mining area by means of Canonical (MANOVA)-Biplot. Journal of Geochemical Exploration, 175, 72–81. https://doi.org/10.1016/j.gexplo.2017.01.002

    Article  CAS  Google Scholar 

  • Smith, J., Sheridan, C., van Dyk, L., & Harding, K. G. (2022). Critical evaluation of the chemical composition of acid mine drainage for the development of statistical correlations linking electrical conductivity with acid mine drainage concentrations. Environmental Advances, 8(April), 100241. https://doi.org/10.1016/j.envadv.2022.100241

    Article  CAS  Google Scholar 

  • Spence, L., & Walden, T. (2001). RISC4 User’s Manual. California.

    Google Scholar 

  • Sun, Z., Xie, X., Wang, P., Hu, Y., & Cheng, H. (2018). Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Science of the Total Environment, 639, 217–227. https://doi.org/10.1016/j.scitotenv.2018.05.176

    Article  CAS  Google Scholar 

  • Swartjes, F. A. (2011). Dealing with contaminated soils. From Theory towards Practical Application. (F. A. Swartjes, Ed.)Springer. https://doi.org/10.1111/j.1475-2743.1991.tb00867.x

  • Tamasi, G., & Cini, R. (2004). Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. The Science of the Total Environment, 327(1–3), 41–51. https://doi.org/10.1016/j.scitotenv.2003.10.011

    Article  CAS  Google Scholar 

  • Tarras-Wahlberg, N., Flachier, A., Fredriksson, G., Lane, S., Lundberg, B., & Sangfors, O. (2000). Environmental Impact of Small-scale and Artisanal Gold Mining in Southern Ecuador. AMBIO: A Journal of the Human Environment, 29(8), 484–491. https://doi.org/10.1579/0044-7447-29.8.484

    Article  Google Scholar 

  • Tran, T. S., Dinh, V. C., Nguyen, T. A. H., & Kim, K. W. (2022). Soil contamination and health risk assessment from heavy metals exposure near mining area in Bac Kan province. Vietnam. Environmental Geochemistry and Health, 44(4), 1189–1202. https://doi.org/10.1007/s10653-021-01168-7

    Article  CAS  Google Scholar 

  • TULSMA. (2015). Texto Unificado de Legislación Secundaria Medio Ambiental. Ministerio de Ambiente de Ecuador. Quito.

  • UNDP. (2022). Sustainable development goals | United Nations Development Programme. https://www.undp.org/sustainable-development-goals. Accessed 3 February 2022

  • USEPA. (2001). Risk assessment guidance for superfund (RAGS) Volume III (Part A). Process for conducting probabilistic risk assessment (Vol. 3). Washington, DC. http://www.epa.gov/sites/production/files/2015-09/documents/rags3adt_complete.pdf

  • USEPA. (2013). ProUCL Version 5.0.00 User Guide. Statistical software for environmental applications for data sets with and without nondetect observations. USEPA Publication. papers2://publication/uuid/248605E5-EF35–437B-85D0–244A7BCD6DBB

  • Weiss, F. T., Leuzinger, M., Zurbrügg, C., & Eggen, R. I. L. (2016). Chapter 4: Mining Industry Pollutants. Chemical Pollution in Low and middle Income Countries, 67–101.

  • WHO. (2017). Guidelines for drinking-water quality, fourth edition incorporating The First Addendum.

  • WHO. (2018). Arsenic primer. Guidance on the investigation & mitigation of arsenic contamination. New York. http://www.unicef.org/wes

  • Withanachchi, S. S., Ghambashidze, G., Kunchulia, I., Urushadze, T., Ploeger, A., River, M., & Withanachchi, S. S. (2018). Water quality in surface water: A preliminary assessment of heavy metal contamination of the Mashavera river, Georgia. International Journal of Environmental Research and Public Health, 15(4), 1–25. https://doi.org/10.3390/ijerph15040621

    Article  CAS  Google Scholar 

  • Zheng, L., Zhou, Z., Rao, M., & Sun, Z. (2020). Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China. Environmental Geochemistry and Health, 42(5), 1401–1413. https://doi.org/10.1007/s10653-019-00428-x

    Article  CAS  Google Scholar 

  • Zhou, Y. (2018). Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment. Science of the Total Environmental, 616–617, 156–163. https://doi.org/10.1016/j.scitotenv.2017.10.232

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561. https://doi.org/10.1016/j.scitotenv.2008.10.061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Erik Smolders and Dr. Ruth Vanderschueren from Soil and Water Division at KU Leuven for their contribution to chemical analyses.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Samantha Jiménez-Oyola: Conceptualization, Methodology, Writing - Original draft preparation. Priscila E. Valverde-Armas: Methodology, Formal analysis, Writing - Reviewing and Editing. Paola Romero: Project administration, Reviewing and Editing. Diego Capa: Data curation and Investigation. Abner Valdivieso: Data curation and Investigation. Jonathan Coronel-León: Writing - Reviewing and Editing. Fredy Guzmán-Martínez: Writing - Reviewing and Editing. Eduardo Chavez: Conceptualization, Resources, Writing - Reviewing and Editing. All authors reviewed the manuscript

Corresponding author

Correspondence to Samantha Jiménez-Oyola.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics statement

The study did not involve testing on humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1243 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Oyola, S., Valverde-Armas, P.E., Romero-Crespo, P. et al. Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk. Environ Geochem Health 45, 4929–4949 (2023). https://doi.org/10.1007/s10653-023-01546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01546-3

Keywords

Navigation