Skip to main content

Advertisement

Log in

Determination of conditioning factors for mapping nickel contamination susceptibility in groundwater in Kanchanaburi Province, Thailand, using random forest and maximum entropy

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater pollution from nickel (Ni) has been a severe concern in Kanchanaburi Province, Thailand. Recent assessments revealed that the Ni concentration in groundwater, particularly in urban areas, often exceeded the permissible limit. The challenge for groundwater agencies is therefore to delineate regions with high susceptibility to Ni contamination. In this study, a novel modeling approach was applied to a dataset of 117 groundwater samples collected from Kanchanaburi Province between April and July 2021. Twenty site-specific initial variables were considered as influencing factors to Ni contamination. The Random Forest (RF) algorithm with Recursive Feature Elimination (RFE) function was used to select the fourteen most influencing variables. These variables were then used as input features to train a ME model to delineate the Ni contamination susceptibility at a high confidence (Area Under the Curve (AUC) validation value of 0.845). Ten input variables of the altitude, geology, land use, slope, soil type, distance to industrial areas, distance to mining areas, electric conductivity, oxidation–reduction potential, and groundwater depth were discovered in the most explaining the variation of spatial Ni contamination at very high (95.47 km2) and high (86.65 km2) susceptibility. This study devises the novel machine learning approach to identify the conditioning factors and map Ni contamination susceptibility in the groundwater, which provides a baseline dataset and reliable methods for the development of a sustainable groundwater management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abbaszadeh, M., Dehghan, M., Khodadadian, A., & Heitzinger, C. (2020). Analysis and application of the interpolating element free Galerkin (IEFG) method to simulate the prevention of groundwater contamination with application in fluid flow. Journal of Computational and Applied Mathematics, 368, 112453. https://doi.org/10.1016/j.cam.2019.112453

    Article  Google Scholar 

  • Alizamir, M., Sobhanardakani, S., & Shahrabadi, A. H. (2019). Prediction of heavy metals concentration in the groundwater resources in Razan Plain: Extreme learning machine vs. artificial neural network and multivariate adaptive regression spline. Annals of Military and Health Sciences Research, 17, e98554. https://doi.org/10.5812/amh.98554

    Article  Google Scholar 

  • Baldwin, R. A. J. E. (2009). Use of Maximum Entropy Modeling in Wildlife Research. Entropy, 11, 854–866.

    Article  Google Scholar 

  • Barzegar, R., Moghaddam, A. A., Deo, R., Fijani, E., & Tziritis, E. (2018). Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Science of The Total Environment, 621, 697–712. https://doi.org/10.1016/j.scitotenv.2017.11.185

    Article  CAS  Google Scholar 

  • Baumann, T., Fruhstorfer, P., Klein, T., & Niessner, R. (2006). Colloid and heavy metal transport at landfill sites in direct contact with groundwater. Water Research, 40, 2776–2786. https://doi.org/10.1016/j.watres.2006.04.049

    Article  CAS  Google Scholar 

  • Bhagat, S. K., Tiyasha, T., Kumar, A., Malik, T., Jawad, A. H., Khedher, K. M., Deo, R. C., & Yaseen, Z. M. (2022). Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 309, 114711. https://doi.org/10.1016/j.jenvman.2022.114711

    Article  CAS  Google Scholar 

  • Boonsrang, A., Chotpantarat, S., & Sutthirat, C. (2018). Factors controlling the release of metals and a metalloid from the tailings of a gold mine in Thailand. Geochemistry Exploration, Environment, Analysis, 18(2), 109–119.

    Article  CAS  Google Scholar 

  • Breiman, Leo. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Chen, Q., Meng, Z., Liu, X., Jin, Q., & Su, R. (2018). Decision variants for the automatic determination of optimal feature subset in RF-RFE. Genes, 9(6), 301.

    Article  Google Scholar 

  • Cheng, Y.-S., Yu, T.-T., & Son, N.-T.J.R.S. (2021). random forests for landslide prediction in Tsengwen river watershed. Central Taiwan., 13, 199. https://doi.org/10.3390/rs13020199

    Article  Google Scholar 

  • Chotpantarat, S., Limpakanwech, C., Siriwong, W., Siripattanakul, S., Sutthirat, C. (2011). Effects of soil water characteristic curves on simulation of nitrate vertical transport in a Thai agricultural soil. Sustainable Environment Research. 21.

  • Chotpantarat, S., Ong, S. K., Sutthirat, C., & Osathaphan, K. J. J. S. R. (2008). Heavy metal contamination of groundwater and surrounding soils by tailing leachates from a gold mine in Thailand. Journal of Science Research, 33, 101–112.

    CAS  Google Scholar 

  • Chotpantarat, S., Parkchai, T., & Wisitthammasri, W. (2020). Multivariate statistical analysis of hydrochemical data and stable isotopes of groundwater contaminated with nitrate at Huay Sai Royal Development Study Center and adjacent areas in Phetchaburi Province Thailand. Water, 12(4), 1127.

    Article  CAS  Google Scholar 

  • Chotpantarat, S., & Thamrongsrisakul, J. (2021). Natural and anthropogenic factors influencing hydrochemical characteristics and heavy metals in groundwater surrounding a gold mine. Thailand. Journal of Asian Earth Sciences, 211, 104692.

    Article  Google Scholar 

  • Darst, B. F., Malecki, K. C., & Engelman, C. D. (2018). Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genetics, 19, 1–6.

    Article  Google Scholar 

  • De Jesus, K. L. M., Senoro, D. B., Dela Cruz, J. C., & Chan, E. B. (2022). Neuro-particle swarm optimization based in-situ prediction model for heavy metals concentration in groundwater and surface water. Toxics, 10(2), 95.

    Article  Google Scholar 

  • Egbueri, J. C. (2020). Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha, Nigeria. Analytical letters, 53(10), 1620–1638.

    Article  CAS  Google Scholar 

  • Ghadimi, F. (2017). Machine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area. Journal of Tethys, 5, 115–127.

    CAS  Google Scholar 

  • Gunarathna, M. H. J. P., Kumari, M. K. N., & Nirmanee, K. G. S. (2016). Evaluation of interpolation methods for mapping pH of groundwater. International Journal of Latest Technology in Engineering, Management & Applied Science, 3, 1–5.

    Google Scholar 

  • Hayyat, M. S., Adnan, M., Awais, M., Bilal, H. M., Khan, B., & Rahman, H. A. (2020). Effect of heavy metal (Ni) on plants and soil: A review. International Journal Application Research, 6(7), 313–318.

    Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.

    Article  Google Scholar 

  • Hui, H., Jin, Q., & Kavan, P. (2014). A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability, 6(9), 5820–5838. https://doi.org/10.3390/su6095820

    Article  CAS  Google Scholar 

  • Ijlil, S., Essahlaoui, A., Mohajane, M., Essahlaoui, N., Mili, E. M., & Van Rompaey, A. (2022). Machine learning algorithms for modeling and mapping of groundwater pollution risk: A study to reach water security and sustainable development (Sdg) goals in a mediterranean aquifer system. Remote Sensing, 14(10), 2379. https://doi.org/10.3390/rs14102379

    Article  Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630. https://doi.org/10.1103/PhysRev.106.620

    Article  Google Scholar 

  • Jeon, H., & Oh, S. (2020). Hybrid-recursive feature elimination for efficient feature selection. Applied Sciences, 10(9), 3211.

    Article  CAS  Google Scholar 

  • Johnson, R.A., Chawla, N.V., Hellmann, J.J. (2012). Species distribution modeling and prediction: A class imbalance problem. In: 2012 Conference on intelligent data understanding, pp. 9–16.

  • Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150.

    Article  Google Scholar 

  • Kanmani, S., & Gandhimathi, R. (2013). Investigation of physicochemical characteristics and heavy metal distribution profile in groundwater system around the open dump site. Applied Water Science, 3(2), 387–399. https://doi.org/10.1007/s13201-013-0089-y

    Article  CAS  Google Scholar 

  • Ke, B., Nguyen, H., Bui, X.-N., Bui, H.-B., Choi, Y., Zhou, J., Moayedi, H., Costache, R., & Nguyen-Trang, T. (2021). Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Chemosphere, 276, 130204. https://doi.org/10.1016/j.chemosphere.2021.130204

    Article  CAS  Google Scholar 

  • Kuhn, M. (2012). Variable selection using the caret package. pp. 1–24.

  • Kun, W., Nan, Q., & Tianqi, W. (2020). Philosophical analysis of the meaning and nature of entropy and negative entropy theories. Complexity, 2020, 1–11. https://doi.org/10.1155/2020/8769060

    Article  Google Scholar 

  • Mahya, N., & Hesam, S. K. (2021). Urban flood hazard mapping using machine learning models: GARP, RF MaxEnt and NB. Natural Hazards, 106(1), 119–137.

    Article  Google Scholar 

  • Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of regression kriging for spatial interpolation—comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science, 40(1), 28–39. https://doi.org/10.1080/15230406.2013.762138

    Article  Google Scholar 

  • Modis, K., Vatalis, K. I., & Sachanidis, Ch. (2013). Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach. International Journal of Coal Geology, 112, 173–179. https://doi.org/10.1016/j.coal.2012.11.015

    Article  CAS  Google Scholar 

  • Mohankumar, K. (2016). Heavy metal contamination in groundwater around industrial estate vs residential areas in Coimbatore, India. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2016/15943.7527

    Article  Google Scholar 

  • Mosavi, A., Hosseini, F. S., Choubin, B., Abdolshahnejad, M., Gharechaee, H., Lahijanzadeh, A., & Dineva, A. A. (2020). Susceptibility prediction of groundwater hardness using ensemble machine learning models. Water, 12(10), 2770.

    Article  CAS  Google Scholar 

  • Mosavi, A., Hosseini, F. S., Choubin, B., Goodarzi, M., & Dineva, A. A. (2020). Groundwater salinity susceptibility mapping using classifier ensemble and Bayesian machine learning models. IEEE Access, 8, 145564–145576. https://doi.org/10.1109/ACCESS.2020.3014908

    Article  Google Scholar 

  • Mousazade, M., Ghanbarian, G., Pourghasemi, H. R., Safaeian, R., & Cerdà, A. (2019). Maxent data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus Fasciculifolius Boiss. in Fars, Iran. Sustainability, 11(12), 3452. https://doi.org/10.3390/su11123452

    Article  Google Scholar 

  • Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31(9), 2761–2775. https://doi.org/10.1007/s11269-017-1660-3

    Article  Google Scholar 

  • Nilkarnjanakul, W., Watchalayann, P., & Chotpantarat, S. (2022). Spatial distribution and health risk assessment of As and Pb contamination in the groundwater of Rayong Province Thailand. Environmental Research, 204, 111838.

    Article  CAS  Google Scholar 

  • Peng, C., Cai, Y., Wang, T., Xiao, R., & Chen, W. (2016). Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Scientific Reports, 6(1), 1–9.

    Article  Google Scholar 

  • Pham, B. T., Phong, T. V., Nguyen-Thoi, T., Parial, K., Singh, S., Ly, H. B., Nguyen, K. T., Ho, L. S., Le, H. V., & Prakash, I. (2022). Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto International., 37(3), 735–57.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Podgorski, J., Ruohan, W., Chakravorty, B., & Polya, D. A. (2020). Groundwater arsenic distribution in India by machine learning geospatial modeling. International Journal of Environmental Research and Public Health, 17(19), 7119. https://doi.org/10.3390/ijerph17197119

    Article  Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. J. C. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region Iran. Catena, 137, 360–372.

    Article  Google Scholar 

  • Ray, S. (2019). A quick review of machine learning algorithms. In: 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), pp. 35–39.

  • Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., & Pradhan, B. (2018). A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment, 644, 954–962. https://doi.org/10.1016/j.scitotenv.2018.07.054

    Article  CAS  Google Scholar 

  • Sumdang, N., Chotpantarat, S., Cho, K.W., & Thanh, N. N. (2023). The risk assessment of arsenic contamination in the urbanized coastal aquifer of Rayong groundwater basin Thailand using the machine learning approach. Ecotoxicology and Environmental Safety, 253, 114665. https://doi.org/10.1016/j.ecoenv.2023.114665

    Article  CAS  Google Scholar 

  • Shankar, M., & Prabhat, P. (2013). Study of major and trace elements in groundwater of Birsinghpur Area, Satna District Madhya Pradesh. India., 5, 380–386. https://doi.org/10.5897/IJWREE2012.0408

    Article  CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379–423.

    Article  Google Scholar 

  • Shyamala, G., Arun Kumar, B., Manvitha, S., Vinay Raj, T. (2020). Assessment of spatial interpolation techniques on groundwater contamination. In: International conference on emerging trends in engineering (ICETE), pp. 262–269.

  • Singh, A., Thakur, N., Sharma, A. (2016). A review of supervised machine learning algorithms. In: 2016 3rd international conference on computing for sustainable global development (INDIACom), pp. 1310–1315.

  • Singha, S., Pasupuleti, S., Singha, S. S., & Kumar, S. (2020). Effectiveness of groundwater heavy metal pollution indices studies by deep-learning. Journal of Contaminant Hydrology, 235, 103718. https://doi.org/10.1016/j.jconhyd.2020.103718

    Article  CAS  Google Scholar 

  • Singha, S., Pasupuleti, S., Singha, S. S., Singh, R., & Kumar, S. (2021). Prediction of groundwater quality using efficient machine learning technique. Chemosphere, 276, 130265.

    Article  CAS  Google Scholar 

  • Sun, D., Qingyu, G., Wen, H., Jiahui, X., Zhang, Y., Shi, S., Xue, M., & Zhou, X. (2022). Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Research. https://doi.org/10.1016/j.gr.2022.07.013

    Article  Google Scholar 

  • Sun, D., Shi, S., Wen, H., Xu, J., Zhou, X., & Wu, J. (2021). A hybrid optimization method of factor screening predicated on GeoDetector and random forest for landslide susceptibility mapping. Geomorphology, 379, 107623.

    Article  Google Scholar 

  • Thanh, N. N., Chotpantarat, S., Trung, N. H., & Ngu, N. H. (2022). Mapping groundwater potential zones in Kanchanaburi Province, Thailand by integrating of analytic hierarchy process, frequency ratio, and random forest. Ecological Indicators, 145, 109591.

    Article  CAS  Google Scholar 

  • Thanh, N. N., Thunyawatcharakul, P., Ngu, N. H., & Chotpantarat, S. (2022). Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation. Journal of Hydrology, 614, 128501. https://doi.org/10.1016/j.jhydrol.2022.128501

    Article  Google Scholar 

  • Tiankao, W., & Chotpantarat, S. (2018). Risk assessment of arsenic from contaminated soils to shallow groundwater in Ong Phra Sub-District, Suphan Buri Province, Thailand. Journal of Hydrology: Regional Studies, 19, 80–96.

    Google Scholar 

  • Tien Bui, D., Shirzadi, A., Chapi, K., Shahabi, H., Pradhan, B., Pham, B. T., Singh, V. P., Chen, W., Khosravi, K., & Bin Ahmad, B. (2019). A hybrid computational intelligence approach to groundwater spring potential mapping. Water, 11, 2013. https://doi.org/10.3390/w11102013

    Article  Google Scholar 

  • Trabelsi, F., & BelHadjAli, S. (2022). Exploring machine learning models in predicting irrigation groundwater quality indices for effective decision making in medjerda River Basin, Tunisia. Sustainability, 14, 2341. https://doi.org/10.3390/su14042341

    Article  CAS  Google Scholar 

  • Twarakavi, N. K., & Kaluarachchi, J. J. (2005). Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Groundwater, 43(2), 200–214. https://doi.org/10.1111/j.1745-6584.2005.0001.x

    Article  CAS  Google Scholar 

  • Uliasz-Misiak, B., Winid, B., Lewandowska-Śmierzchalska, J., & Matuła, R. (2022). Impact of road transport on groundwater quality. Science of The Total Environment, 824, 153804. https://doi.org/10.1016/j.scitotenv.2022.153804

    Article  CAS  Google Scholar 

  • Ullah, R., Malik, R.N., Qadir, A.J.A.J.o.E.S., Technology, 2009. Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. 3.

  • van der Grift, B., & Griffioen, J. (2008). Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals. Journal of Contaminant Hydrology, 96(1–4), 48–68. https://doi.org/10.1016/j.jconhyd.2007.10.001

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S., Kim, T., Prasanna, M. V., Hamm, S. J. W. Q., & Exposure, H. (2015). Assessment and distribution of metals contamination in groundwater: A case study of Busan City, Korea. Water Quality, Exposure and Health, 7, 219–225. https://doi.org/10.1007/s12403-014-0142-6

    Article  CAS  Google Scholar 

  • Wahyudi, A., Bartzke, M., Küster, E., & Bogaert, P. (2013). Maximum entropy estimation of a Benzene contaminated plume using ecotoxicological assays. Environmental Pollution, 172, 170–179. https://doi.org/10.1016/j.envpol.2012.08.018

    Article  CAS  Google Scholar 

  • Waleeittikul, A., Chotpantarat, S., & Ong, S. K. (2019). Impacts of salinity level and flood irrigation on Cd mobility through a Cd-contaminated soil, Thailand: experimental and modeling techniques. Journal of Soils and Sediments, 19(5), 2357–2373. https://doi.org/10.1007/s11368-018-2207-9

    Article  CAS  Google Scholar 

  • Wang, M., Chen, H., & Lei, M. (2022). Identifying potentially contaminated areas with MaxEnt model for petrochemical industry in China. Environmental Science and Pollution Research, 29(36), 54421–54431. https://doi.org/10.1007/s11356-022-19697-8

    Article  CAS  Google Scholar 

  • Wei, P., Zhu, W., Zhao, Y., Fang, P., Zhang, X., Yan, N., & Zhao, H. J. R. S. (2021). Extraction of Kenyan grassland information using PROBA-V based on RFE-RF algorithm. Remote Sensing, 13, 4762.

    Article  Google Scholar 

  • Wisitthammasri, W., Chotpantarat, S., & Thitimakorn, T. (2020). Multivariate statistical analysis of the hydrochemical characteristics of a volcano sedimentary aquifer in Saraburi Province, Thailand. Journal of Hydrology: Regional Studies, 32, 100745.

    Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental geochemistry and health, 36, 169–182.

    Article  CAS  Google Scholar 

  • Yang, J., Song, C., Yang, Y., Xu, C., Guo, F., & Xie, L. (2019). New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China. Geomorphology, 324, 62–71.

    Article  Google Scholar 

  • Yao, X., Bojie, F., Lü, Y., Sun, F., Wang, S., & Liu, M. (2013). Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment. PLoS ONE, 8(1), e54660. https://doi.org/10.1371/journal.pone.0054660

    Article  CAS  Google Scholar 

  • Zhang, B., & Wang, H. (2022). Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: A comparative study of four methods. GIScience & Remote Sensing, 59(1), 71–95.

    Article  Google Scholar 

  • Zhou, X., Wen, H., Zhang, Y., Xu, J., & Zhang, W. (2021). Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geoscience Frontiers, 12(5), 101211.

    Article  Google Scholar 

Download references

Acknowledgements

The researchers would like to thank the Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, and Hue University of Agriculture and Forestry, Hue University. We acknowledge financial support from the National Research Council of Thailand (NRCT): NRCT5-RSA63001-06 and partially support by the Ratchadapisek Sompoch Endowment Fund (2022), Chulalongkorn University (765007-RES02). Nguyen Ngoc Thanh has received the ASEAN/NON-ASEAN Scholarship and the 90th Anniversary of Chulalongkorn University Scholarship from Chulalongkorn University for Ph.D. Program at Graduate School, Chulalongkorn University. We are grateful for the thorough reviews of anonymous reviewers. Their valuable comments significantly improved the earlier draft of this article.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization, N.N.T. and S.C..; methodology, N.N.T. and S.C.; validation, N.N.T. and S.C.; formal analysis, N.N.T.; investigation, N.N.T.and S.C.; resources, S.C.; data curation, N.N.T. and S.C.; writing—original draft preparation, N.N.T.; writing—review and editing, S.C., H.N.T., N.H.T.; visualization, N.N.T.; supervision, S.C.; project administration, S.C.; funding acquisition, S.C. All authors reviewed the manuscript.”

Corresponding author

Correspondence to Srilert Chotpantarat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, N.N., Chotpantarat, S., Ha, NT. et al. Determination of conditioning factors for mapping nickel contamination susceptibility in groundwater in Kanchanaburi Province, Thailand, using random forest and maximum entropy. Environ Geochem Health 45, 4583–4602 (2023). https://doi.org/10.1007/s10653-023-01512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01512-z

Keywords

Navigation