Skip to main content
Log in

Geochemical characteristics of the Rajmahal coals in Dhulia North Block, Eastern India: implication to their utilization and environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The borehole coal samples of Dhulia North Block from the Rajmahal Basin, Eastern India, were systematically analyzed based on the chemical composition and concentration of major and trace elements (including rare earth elements, REEs) to assess the distribution of REEs and their environmental implications with utilization potential. The Dhulia North Block coals are characterized by the predominant major oxides of SiO2, Al2O3, and Fe2O3, accounting for 94% of the total ash composition, indicating the presence of quartz, clay-rich minerals, and pyrite. Compared with the average world coal ash, the total REE content in the analyzed samples ranged from 341.0 to 810.4 ppm, which is substantially higher. Hot humid climate conditions with intermediate igneous source rocks of the basin were demonstrated by the major oxide ratios (Al2O3/TiO2 < 20) and plots of TiO2 with Al2O3 and Zr. The redox-sensitive elements such as V, Ni, Cr, and Co found in the Dhulia North Block coal indicate that an oxic sedimentary environment existed in the basin when coal was formed. The low sulfur content (1% in most samples) indicates freshwater conditions in the basin at the time of organic matter deposition. The outlook coefficient (Coutl) varies between 0.7 and 1.6, indicating that the Dhulia North Block coals are a prospective source of REEs. The Dhulia North Block coals are characterized by low H/C and O/C atomic ratios ranging from 0.56 to 0.90 and 0.10 to 0.22, respectively, and contain type-III kerogens, indicating gas-prone source rock. Further, the basic-to-acid oxide ratio suggested that Dhulia North Block coals were suitable for utilization during combustion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abedini, A., & Calagari, A. A. (2017). Geochemistry of claystones of the Ruteh Formation, NW Iran: Implications for provenance, source-area weathering, and paleo-redox conditions. Neues Jahrb Miner Abh, 194, 107–123.

    Article  CAS  Google Scholar 

  • Abedini, A., & Khosravi, M. (2022). Geochemical constraints on the Zola-Chay river sediments, NW Iran: Implications for provenance and source-area weathering. Arabian Journal of Geosciences, 15(18), 1–17.

    Article  Google Scholar 

  • Adebiyi, F. M., Thoss, V., & Akinola, A. S. (2014). Comparative studies of the elements that are associated with petroleum hydrocarbon formation in Nigerian crude oil and bitumen using ICP-OES. Journal of Sustainable Energy Engineering, 2(1), 10–18.

    Article  CAS  Google Scholar 

  • ASTM D3176. (2013). Standard practice for ultimate analysis of coal and coke. Annual Book of Standards, vol. 05.06. ASTM International, West Conshohocken, Pennsylvania.

  • ASTM D5865. (2019). Standard test method for gross calorific value of coal and coke.

  • Bhangare, R. C., Ajmal, P. Y., Sahu, S. K., Pandit, G. G., & Puranik, V. D. (2011). Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology, 86(4), 349–356.

    Article  CAS  Google Scholar 

  • Cao, L., Zhang, Z., Zhao, J., Jin, X., Li, H., Li, J., & Wei, X. (2021). Discussion on the applicability of Th/U ratio for evaluating the paleoredox conditions of lacustrine basins. International Journal of Coal Geology, 248, 103868.

    Article  CAS  Google Scholar 

  • Chou, C. L. (2012). Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology, 100, 1–13.

    Article  CAS  Google Scholar 

  • Dai, S., & Finkelman, R. B. (2018). Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186, 155–164.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Chou, C. L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012a). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21.

    Article  CAS  Google Scholar 

  • Dai, S., Seredin, V. V., Ward, C. R., Jiang, J., Hower, J. C., Song, X., Jiang, Y., Wang, X., Gornostaeva, T., Li, X., & Liu, H. (2014a). Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. International Journal of Coal Geology, 121, 79–97.

    Article  CAS  Google Scholar 

  • Dai, S., Ward, C. R., Graham, I. T., French, D., Hower, J. C., Zhao, L., & Wang, X. (2017). Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 175, 44–74.

    Article  CAS  Google Scholar 

  • Dai, S., Zhao, L., Hower, J. C., Johnston, M. N., Song, W., Wang, P., & Zhang, S. (2014b). Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy & Fuels, 28(2), 1502–1514.

    Article  CAS  Google Scholar 

  • Dai, S., Zou, J., Jiang, Y., Ward, C. R., Wang, X., Li, T., Xue, W., Liu, S., Tian, H., Sun, X., & Zhou, D. (2012b). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94, 250–270.

    Article  CAS  Google Scholar 

  • Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924.

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1993). Trace and minor elements in coal. Organic geochemistry (pp. 593–607). Springer.

    Chapter  Google Scholar 

  • Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22(12), 9464–9474.

    Article  CAS  Google Scholar 

  • Fu, X., Wang, J., Zeng, Y., Tan, F., & He, J. (2011). Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet. China. Geochemistry, 71(1), 21–30.

    Article  CAS  Google Scholar 

  • Galarraga, F., Reategui, K., Martïnez, A., Martínez, M., Llamas, J. F., & Márquez, G. (2008). V/Ni ratio as a parameter in palaeoenvironmental characterization of nonmature medium-crude oils from several Latin American basins. Journal of Petroleum Science and Engineering, 61(1), 9–14.

    Article  CAS  Google Scholar 

  • Goodarzi, F., Gentzis, T., Sanei, H., & Pedersen, P. K. (2019). Elemental composition and organic petrology of a Lower Carboniferous-age freshwater oil shale in Nova Scotia. Canada. ACS Omega, 4(24), 20773–20786.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Jha, M., Singh, A. K., Mahato, A., Subramani, T., Singh, P. K., & Singh, V. (2022b). Geochemical characteristics, origin and forms of sulphur distribution in the Talcher coalfield, India. Fuel, 316, 123376.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Santosh, M. S., Dileepkumar, V. G., Subramani, T., Reddy, R., Masto, R. E., & Maity, S. (2022a). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 307, 135710.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Singh, A. K., Singh, P. K., & Jha, M. (2022c). Sulphur in Jharia and Raniganj coalfields: Chemical fractionation and its environmental implications. Environmental Research, 204, 112382.

    Article  CAS  Google Scholar 

  • Hakimi, M. H., Abdullah, W. H., Alqudah, M., Makeen, Y. M., & Mustapha, K. A. (2016). Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions. Fuel, 181, 34–45.

    Article  CAS  Google Scholar 

  • Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.

    Article  CAS  Google Scholar 

  • Hower, J. C., Groppo, J. G., Joshi, P., Preda, D. V., Gamliel, D. P., Mohler, D. T., Wiseman, J. D., Hopps, S. D., Morgan, T. D., Beers, T., & Schrock, M. (2020). Distribution of Lanthanides, Yttrium, and Scandium in the pilot-scale beneficiation of fly ashes derived from eastern Kentucky coals. Minerals, 10(2), 105.

    Article  CAS  Google Scholar 

  • Huang, Q., Talan, D., Restrepo, J. H., Baena, O. J. R., Kecojevic, V., & Noble, A. (2019). Characterization study of rare earths, yttrium, and scandium from various Colombian coal samples and non-coal lithologies. International Journal of Coal Geology, 209, 14–26.

    Article  CAS  Google Scholar 

  • Hunt, J. M. (1996). Petroleum geochemistry and geology (p. 743). W.H. Freeman and Company.

    Google Scholar 

  • IS:1350 (Part-I). (1984). Methods of test for coal and coke part 1 proximate analysis. (Reaffirmed 2001) Ed 3.1 (1992-08) BIS 2003, Bureau of Indian standards, New Delhi 110002.

  • Jones, B., & Manning, D. A. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129.

    Article  Google Scholar 

  • Karayigit, A. I., Gayer, R. A., Querol, X., & Onacak, T. (2000). Contents of major and trace elements in feed coals from Turkish coal-fired power plants. International Journal of Coal Geology, 44(2), 169–184.

    Article  CAS  Google Scholar 

  • Karayiğit, A. İ, İerli, S., Querol, X., Mastalerz, M., Oskay, R. G., & Hower, J. C. (2019). Mineralogy and geochemistry of feed coals and combustion residues from Tunbilek and Seyitmer coal-fired power plants in Western Turkey. Coal Combustion and Gasification Products, 11(1), 18–31.

    Google Scholar 

  • Ketris, M. Á., & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2), 135–148.

    Article  CAS  Google Scholar 

  • Koukouzas, N., Kalaitzidis, S. P., & Ward, C. R. (2010). Organic petrographical, mineralogical and geochemical features of the Achlada and Mavropigi lignite deposits, NW Macedonia, Greece. International Journal of Coal Geology, 83(4), 387–395.

    Article  CAS  Google Scholar 

  • Lin, R., Howard, B. H., Roth, E. A., Bank, T. L., Granite, E. J., & Soong, Y. (2017). Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel, 200, 506–520.

    Article  CAS  Google Scholar 

  • Lin, R., Soong, Y., & Granite, E. J. (2018). Evaluation of trace elements in US coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY). International Journal of Coal Geology, 192, 1–13.

    Article  CAS  Google Scholar 

  • Mathews, R. P., Pillai, S. S. K., Manoj, M. C., & Agrawal, S. (2020). Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia Coal mine (Rajmahal Basin), Jharkhand, India: A multi-proxy approach. International Journal of Coal Geology, 224, 103485.

    Article  CAS  Google Scholar 

  • Mayfield, D. B., & Lewis, A. S. (2013). Environmental review of coal ash as a resource for rare earth and strategic elements. In Proceedings of the 2013 World of coal ash (WOCA) conference, Lexington, KY, USA (pp. 22–25).

  • McLennan, S. M. (1993). Weathering and global denudation. The Journal of Geology, 101(2), 295–303.

    Article  Google Scholar 

  • Mishra, V., Chakravarty, S., Finkelman, R. B., & Varma, A. K. (2019). Geochemistry of rare earth elements in lower Gondwana coals of the Talchir Coal Basin, India. Journal of Geochemical Exploration, 204, 43–56.

    Article  CAS  Google Scholar 

  • Murthy, S., Mendhe, V. A., Uhl, D., Mathews, R. P., Mishra, V. K., & Gautam, S. (2021). Palaeobotanical and biomarker evidence for Early Permian (Artinskian) wildfire in the Rajmahal Basin, India. Journal of Palaeogeography, 10(1), 1–21.

    Article  Google Scholar 

  • Nesbitt, H., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717.

    Article  CAS  Google Scholar 

  • Pillai, S., Mathews, R. P., Murthy, S., Goswami, S., Agrawal, S., Sahoo, M., & Singh, R. K. (2020). Palaeofloral investigation based on morphotaxonomy, palynomorphs, biomarkers and stable isotope from Lalmatia Coal Mine of Rajmahal Lower Gondwana Basin, Godda District, Jharkhand: An inclusive empirical study. Journal of the Geological Society of India, 96(1), 43–57.

    Article  CAS  Google Scholar 

  • Saikia, B. K., Hower, J. C., Islam, N., Sharma, A., & Das, P. (2021). Geochemistry and petrology of coal and coal fly ash from a thermal power plant in India. Fuel, 291, 120122.

    Article  CAS  Google Scholar 

  • Saini, V., Gupta, R. P., & Arora, M. K. (2016). Environmental impact studies in coalfields in India: A case study from Jharia coalfield. Renewable and Sustainable Energy Reviews, 53, 1222–1239.

    Article  Google Scholar 

  • Scott, D. H. (1999). Ash behaviour during combustion and gasification (pp. 38). UK.

  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93.

    Article  CAS  Google Scholar 

  • Seredin, V. V., Dai, S., Sun, Y., & Chekryzhov, I. Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31, 1–11.

    Article  CAS  Google Scholar 

  • Shao, J., & Yang, S. (2012). Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin? Chinese Science Bulletin, 57(10), 1178–1187.

    Article  CAS  Google Scholar 

  • Singh, M. P., & Singh, P. K. (1996). Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar. India. International Journal of Coal Geology, 29(1–3), 93–118.

    Article  Google Scholar 

  • Singh, P. K., & Singh, M. P. (2011). A study on the classification and utilization of coal from Rajmahal basin, Jharkhand, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(2), 134–142.

    Article  CAS  Google Scholar 

  • Snyman, C. P. (1989). The role of coal petrography in understanding the properties of South African coal. International Journal of Coal Geology, 14(1–2), 83–101.

    Article  CAS  Google Scholar 

  • Song, Y., Bechtel, A., Sachsenhofer, R. F., Groß, D., Liu, Z., & Meng, Q. (2017). Depositional environment of the Lower Cretaceous Muling Formation of the Laoheishan Basin (NE China): Implications from geochemical and petrological analyses. Organic Geochemistry, 104, 19–34.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (p. 312). Blackwell.

    Google Scholar 

  • Tobia, F. H., Al-Jaleel, H. S., & Ahmad, I. N. (2019). Provenance and depositional environment of the Middle-Late Jurassic shales, northern Iraq. Geosciences Journal, 23(5), 747–765.

    Article  CAS  Google Scholar 

  • Tripathi, A. (2001). Permian, jurassic and early cretaceous palynofloral assemblages from subsurface sedimentary rocks in Chuperbhita Coalfield, Rajmahal Basin, India. Review of Palaeobotany and Palynology, 113(4), 237–259.

    Article  CAS  Google Scholar 

  • Wang, L., & Liang, T. (2015). Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou. China. Scientific Reports, 5(1), 1–11.

    Google Scholar 

  • Wang, Z., Wang, J., Fu, X., Zhan, W., Yu, F., Feng, X., Song, C., Chen, W., & Zeng, S. (2017). Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: Controlled by the paleoclimate, paleoenvironment, and provenance. Marine and Petroleum Geology, 88, 440–457.

    Article  CAS  Google Scholar 

  • Ward, C. R., Spears, D. A., Booth, C. A., Staton, I., & Gurba, L. W. (1999). Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales. Australia. International Journal of Coal Geology, 40(4), 281–308.

    Article  CAS  Google Scholar 

  • Zhang, W., Noble, A., Yang, X., & Honaker, R. (2020). A comprehensive review of rare earth elements recovery from coal-related materials. Minerals, 10(5), 451.

    Article  CAS  Google Scholar 

  • Zhao, L., Ward, C. R., French, D., & Graham, I. T. (2013). Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. International Journal of Coal Geology, 116, 208–226.

    Article  Google Scholar 

  • Zhao, L., Ward, C. R., French, D., & Graham, I. T. (2015). Major and trace element geochemistry of coals and intra-seam claystones from the Songzao Coalfield, SW China. Minerals, 5(4), 870–893.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to Director, CSIR-NML, for providing the analytical facility for analyses. The first author acknowledges the University of Malaya Post-Doctoral Research Fellowship scheme (associated with grant number IF064-2019). We gladly acknowledge the editor and three anonymous knowledgeable reviewers for their helpful suggestions that improved the original manuscript.

Funding

The authors declare that no funds/grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. The individual contribution is as follows: AK was involved in conceptualization, wrote the first draft of the manuscript, and revised the manuscript. SK collected the sample, performed the formal analysis, and prepared the tables. KAM and SC were involved in conceptualization, supervision, and review and edit. SC performed the formal analysis and was involved in review and edit.

Corresponding author

Correspondence to Sanchita Chakravarty.

Ethics declarations

Competing interests

All authors declare that they have no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumari, S., Mustapha, K.A. et al. Geochemical characteristics of the Rajmahal coals in Dhulia North Block, Eastern India: implication to their utilization and environment. Environ Geochem Health 45, 6967–6983 (2023). https://doi.org/10.1007/s10653-023-01475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01475-1

Keywords

Navigation