Skip to main content

Advertisement

Log in

Evaluation for the spatiotemporal patterns of ecological vulnerability and habitat quality: implications for supporting habitat conservation and healthy sustainable development

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Currently, the rapid socioeconomic development and urbanization around the world have caused the ecological environment on the earth surface to become extremely fragile and destroyed. In addition, the increasing demand of human beings for material also leads to the unsustainable development of resources and environment. However, how to achieve the win–win goal between socioeconomic development and ecological protection in the context of these impacts? It is becoming a major problem for governments and policy makers. To further reveal the contradiction between man and land, taking Wuhan metropolitan area as the study area, this study mainly proposed a framework for the comprehensive optimization of landscape pattern and ecological environment and constructed the ecological vulnerability mixed evaluation model. Then, the integrated valuation of ecosystem services and trade-offs (InVEST) model was employed to evaluate the changes in habitat quality, focusing on the analysis of the impact mechanism of the evolution of ecological environment. This study found that the hybrid model of landscape vulnerability can successfully explore the landscape ecological vulnerability of Wuhan metropolitan area from 2000 to 2020, and its spatiotemporal differentiation pattern was obvious. The InVEST model showed that the habitat quality had obvious spatial differentiation. On the whole, the overall quality of the habitat was low and the degradation degree was high. Furthermore, our study also showed that the change of landscape ecological environment was influenced by the common potential of local nature and social economy, rather than a single factor. Finally, the main purpose of this study is to help scientifically formulate habitat protection and landscape planning strategies through in-depth study of landscape ecological environment, so as to alleviate man-land contradiction and support regional sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

The data sets generated and analyzed during the current study are not publicly available due to the signing of the confidentiality agreement but are available from the corresponding author on reasonable request.

References

  • Banerjee, S., Middel, A., & Chattopadhyay, S. (2022). A regression-based three-phase approach to assess outdoor thermal comfort in informal micro-entrepreneurial settings in tropical Mumbai. International Journal of Biometeorology, 66(2), 313–329.

    Article  Google Scholar 

  • Bhandari, G., Bagheri, A. R., Bhatt, P., & Bilal, M. (2021). Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere, 275, 130013.

    Article  CAS  Google Scholar 

  • Bindajam, A. A., Mallick, J., Talukdar, S., Islam, A. M. T., & Alqadhi, S. (2021). Integration of artificial intelligence-based LULC mapping and prediction for estimating ecosystem services for urban sustainability: Past to future perspective. Arabian Journal of Geosciences, 14(18), 1887.

    Article  Google Scholar 

  • Carvalho, C. D., Lucas, M. S., & Cortes, M. C. (2021). Rescuing intraspecific variation in human-impacted environments. Journal of Applied Ecology, 58(2), 350–359.

    Article  Google Scholar 

  • Celleri, C., Pratolongo, P., & Arena, M. (2022). Spatial and temporal patterns of soil salinization in shallow groundwater environments of the Bahia Blanca estuary: Influence of topography and land use. Land Degradation & Development, 33(3), 470–483.

    Article  Google Scholar 

  • Chen, M. Y., Zeng, L. X., Huang, Z. L., Lei, L., Shen, Y. F., & Xiao, W. F. (2021). Evaluating suitability of land for forest landscape restoration: A case study of Three Gorges Reservoir, China. Ecological Indicators, 127, 107765.

    Article  Google Scholar 

  • Choudhary, A., Deval, K., & Joshi, P. K. (2021). Study of habitat quality assessment using geospatial techniques in Keoladeo National Park, India. Environmental Science and Pollution Research, 28(11), 14105–14114.

    Article  Google Scholar 

  • Cosic-Flajsig, G., Vuckovic, I., & Karleusa, B. (2020). An innovative holistic approach to an E-flow assessment model. Civil Engineering Journal-Tehran, 6(11), 2188–2202.

    Article  Google Scholar 

  • Deng, X. J., Hu, S., & Zhan, C. S. (2022). Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-18744-8

    Article  Google Scholar 

  • Dong, J. Q., Jiang, H., Gu, T. W., Liu, Y. X., & Peng, J. (2022). Sustainable landscape pattern: A landscape approach to serving spatial planning. Landscape Ecology, 37(1), 31–42.

    Article  Google Scholar 

  • Duque, J. F. M., Zapico, I., Bugosh, N., Tejedor, M., Delgado, F., Martin-Moreno, C., & Nicolau, J. M. (2021). A Somolinos quarry land stewardship history: From ancient and recent land degradation to sensitive geomorphic-ecological restoration and its monitoring. Ecological Engineering, 170, 106359.

    Article  Google Scholar 

  • Fang, H. Y. (2020). Impact of land use changes on catchment soil erosion and sediment yield in the northeastern China: A panel data model application. International Journal of Sediment Research, 35(5), 540–549.

    Article  Google Scholar 

  • Feng, R. D., Wang, F. Y., Wang, K. Y., Wang, H. J., & Li, L. (2021). Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environment International, 157, 106857.

    Article  Google Scholar 

  • Firozjaei, M. K., Fathololoumi, S., Weng, Q. H., Kiavarz, M., & Alavipanah, S. K. (2020). Remotely Sensed Urban Surface Ecological Index (RSUSEI): An analytical framework for assessing the surface ecological status in urban environments. Remote Sensing, 12(12), 2029.

    Article  Google Scholar 

  • Fourcade, Y., Besnard, A. G., Beslot, E., Hennique, S., Mourgaud, G., Berdin, G., & Secondi, J. (2018). Habitat selection in a dynamic seasonal environment: Vegetation composition drives the choice of the breeding habitat for the community of passerines in floodplain grasslands. Biological Conservation, 228, 301–309.

    Article  Google Scholar 

  • Gao, Y., Wu, Z. F., & Chen, Z. L. (2012). Landscape ecological security assessment based on projection pursuit in Pearl River Delta. Environmental Monitoring and Assessment, 184(4), 2307–2319.

    Article  Google Scholar 

  • Germani, A. R., Morone, P., & Testa, G. (2014). Environmental justice and air pollution: A case study on Italian provinces. Ecological Economics, 106, 69–82.

    Article  Google Scholar 

  • Guan, D. J., Jiang, Y. A., & Cheng, L. D. (2022). How can the landscape ecological security pattern be quantitatively optimized and effectively evaluated? An integrated analysis with the granularity inverse method and landscape indicators. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16759-1

    Article  Google Scholar 

  • Guga, S., Riao, D., Li, K. W., Han, A., & Zhang, J. Q. (2021). Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China. Ecological Indicators, 131, 108152.

    Article  Google Scholar 

  • Han, J. J., Wang, J. P., Chen, L., Xiang, J. Y., Ling, Z. Y., Li, Q. K., & Wang, E. L. (2021). Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecological Indicators, 124, 107404.

    Article  Google Scholar 

  • Hao, C. L., Yan, D. H., Xiao, W. H., Shi, M., He, D. W., & Sun, Z. X. (2015). Impacts of typical rainfall processes on nitrogen in typical rainfield of black soil region in Northeast China. Arabian Journal of Geosciences, 8(9), 6745–6757.

    Article  CAS  Google Scholar 

  • Hargis, C. D., Bissonette, J. A., & David, J. L. (1998). The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecology, 13(3), 167–186.

    Article  Google Scholar 

  • Harlio, A., Kuussaari, M., Heikkinen, R. K., & Arponen, A. (2019). Incorporating landscape heterogeneity into multi-objective spatial planning improves biodiversity conservation of semi-natural grasslands. Journal for Nature Conservation, 49, 37–44.

    Article  Google Scholar 

  • Hernandez-Stefanoni, J. L., & Dupuy, J. M. (2008). Effects of landscape patterns on species density and abundance of trees in a tropical subdeciduous forest of the Yucatan Peninsula. Forest Ecology and Management, 255(11), 3797–3805.

    Article  Google Scholar 

  • Hersperger, A. M., Gradinaru, S. R., Daunt, A. B. P., Imhof, C. S., & Fan, P. L. (2021). Landscape ecological concepts in planning: Review of recent developments. Landscape Ecology, 36(8), 2329–2345.

    Article  Google Scholar 

  • Hiebeler, D. E., Michaud, I. J., Wasserman, B. A., & Buchak, T. D. (2013). Habitat association in populations on landscapes heterogeneous habitat quality. Journal of Theoretical Biology, 317, 47–54.

    Article  Google Scholar 

  • Huang, M. Q., Li, Y. B., Xia, C. H., Zeng, C. C., & Zhang, B. (2022). Coupling responses of landscape pattern to human activity and their drivers in the hinterland of Three Gorges Reservoir Area. Global Ecology and Conservation, 33, e01992.

    Article  Google Scholar 

  • Huang, Y. X., Yin, X. Q., Ye, G. F., Lin, J. M., Huang, R., Wang, N., Wang, L., & Sun, Y. (2013). Spatio-temporal variation of landscape heterogeneity under influence of human activities in Xiamen City of China in recent decade. Chinese Geographical Science, 23(2), 227–236.

    Article  Google Scholar 

  • Jin, Z. F., Wang, J., & Kong, X. S. (2020). Combining habitat area and fragmentation change for ecological disturbance assessment in Jiangsu Province, China. Environmental Science and Pollution Research, 27(17), 20817–20830.

    Article  Google Scholar 

  • Kim, B., & Park, J. (2020). Random ecological networks that depend on ephemeral wetland complexes. Ecological Engineering, 156, 105972.

    Article  Google Scholar 

  • Koch, N. M., Matos, P., Branquinho, C., Pinho, P., Lucheta, F., Martins, S. M. D., & Vargas, V. M. F. (2019). Selecting lichen functional traits as ecological indicators of the effects of urban environment. Science of the Total Environment, 654, 705–713.

    Article  CAS  Google Scholar 

  • Kusi, K. K., Khattabi, A., & Mhammdi, N. (2022). Analyzing the impact of land use change on ecosystem service value in the main watersheds of Morocco. Environment Development and Sustainability. https://doi.org/10.1007/s10668-022-02162-4

    Article  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2010). Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108–118.

    Article  Google Scholar 

  • Lee, J., Yu, K., & Kim, J. (2021). Public bike trip purpose inference using point-of-interest data. ISPRS International Journal of Geo-Information, 10(5), 352.

    Article  Google Scholar 

  • Li, Q., Shi, X. Y., & Wu, Q. Q. (2021b). Effects of protection and restoration on reducing ecological vulnerability. Science of the Total Environment, 761, 143180.

    Article  CAS  Google Scholar 

  • Li, S. C., Zhao, Y. L., Xiao, W., Yue, W. Z., & Wu, T. (2021a). Optimizing ecological security pattern in the coal resource-based city: A case study in Shuozhou City, China. Ecological Indicators, 130, 108026.

    Article  Google Scholar 

  • Liang, L. W., Chen, M. X., Luo, X. Y., & Xian, Y. (2021). Changes pattern in the population and economic gravity centers since the Reform and Opening up in China: The widening gaps between the South and North. Journal of Cleaner Production, 310, 127379.

    Article  Google Scholar 

  • Liang, L., Zhang, F., Wu, F., Chen, Y. X., & Qin, K. Y. (2022). Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in northern China. Ecological Indicators, 135, 108555.

    Article  Google Scholar 

  • Liang, X. Y., Jin, X. B., Ren, J., Gu, Z. M., & Zhou, Y. K. (2020). A research framework of land use transition in Suzhou City coupled with land use structure and landscape multifunctionality. Science of the Total Environment, 737, 139932.

    Article  CAS  Google Scholar 

  • Liang, X. Y., & Li, Y. B. (2020). Identification of spatial coupling between cultivated land functional transformation and settlements in Three Gorges Reservoir Area. China. Habitat International, 104, 102236.

    Article  Google Scholar 

  • Liu, H. F., Ding, F. F., Liu, Y. Y., Zhang, L., & Wu, D. (2021). Solid-liquid partitioning and variation of palladium in rainfall runoff. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01032-8

    Article  Google Scholar 

  • Liu, Y. A., Wu, K. N., & Cao, H. L. (2022). Land-use change and its driving factors in Henan province from 1995 to 2015. Arabian Journal of Geosciences, 15(3), 247.

    Article  CAS  Google Scholar 

  • Liu, Y. L., Zhang, X. H., Kong, X. S., Wang, R., & Chen, L. (2018). Identifying the relationship between urban land expansion and human activities in the Yangtze River Economic Belt, China. Applied Geography, 94, 163–177.

    Article  Google Scholar 

  • Liu, J. Y., Liu, M. L., Deng, X. Z., Zhuang, D. F., Zhang, Z. X., & Luo, D. (2002). The land use and land cover change database and its relative studies in China. Journal of Geographical Sciences12(3), 275–282.

  • Martinuzzi, S., Gavier-Pizarro, G. I., Lugo, A. E., & Radeloff, V. C. (2015). Future land-use changes and the potential for novelty in ecosystems of the United States. Ecosystems, 18(8), 1332–1342.

    Article  Google Scholar 

  • Masunungure, C., & Shackleton, S. E. (2018). Exploring long-term livelihood and landscape change in two semi-arid sites in Southern Africa: Drivers and consequences for social-ecological vulnerability. Land, 7(2), 50. https://doi.org/10.3390/land7020050

    Article  Google Scholar 

  • McHenry, J., Rassweiler, A., Hernan, G., Uejio, C. K., Pau, S., Dubel, A. K., & Lester, S. E. (2021). Modelling the biodiversity enhancement value of seagrass beds. Diversity and Distributions, 27(11), 2036–2049.

    Article  Google Scholar 

  • McKinley, J. M., Mueller, U., Atkinson, P. M., Ofterdinger, U., Cox, S. F., Doherty, R., Fogarty, D., Egozcue, J. J., & Pawlowsky-Glahn, V. (2021). Chronic kidney disease of unknown origin is associated with environmental urbanisation in Belfast, UK. Environmental Geochemistry and Health, 42(7), 2597–2614.

    Article  Google Scholar 

  • Mengist, W., Soromessa, T., & Feyisa, G. L. (2021). Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. Journal of Cleaner Production, 329, 129778.

    Article  Google Scholar 

  • Mennicken, S., Kondratow, F., Buralli, F., Manzi, S., Andrieu, E., Roy, M., & Brin, A. (2020). Effects of past and present-day landscape structure on forest soil microorganisms. Frontiers in Ecology and Evolution, 8, 118. https://doi.org/10.3389/fevo.2020.00118

    Article  Google Scholar 

  • Miao, Y. B., Liu, J. J., & Wang, R. Y. (2021). Occupation of cultivated land for urban-rural expansion in China: Evidence from national land survey 1996–2006. Land, 10(12), 1378.

    Article  Google Scholar 

  • Michel, V. T., Tschumi, M., Naef-Daenzer, B., Keil, H., & Gruebler, M. U. (2022). Reduced habitat quality increases intrinsic but not ecological costs of reproduction. Ecology and Evolution, 12(4), e8859.

    Article  Google Scholar 

  • Mirghaed, F. A., & Souri, B. (2021). Relationships between habitat quality and ecological properties across Ziarat Basin in northern Iran. Environment Development and Sustainability, 23(11), 16192–16207.

    Article  Google Scholar 

  • Mishra, T., Pandey, V. C., Praveen, A., Singh, N. B., Singh, N., & Singh, D. P. (2020). Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. Environmental Geochemistry and Health, 42(12), 4101–4111.

    Article  CAS  Google Scholar 

  • Mohandass, D., Campbell, M. J., Hughes, A. C., Mammides, C., & Davidar, P. (2017). The effect of altitude, patch size and disturbance on species richness and density of lianas in montane forest patches. Acta Oecologica-International Journal of Ecology, 83, 1–14.

    Article  Google Scholar 

  • Moreira, M., Fonseca, C., Vergilio, M., Calado, H., & Gil, A. (2018). Spatial assessment assessment of habitat conservation status in a Macaronesian island based on the InVEST model: a case study of Pico Island (Azores, Portugal). Land use policy, 78, 637–649.

  • Morselli, D., & Glaeser, S. (2018). Economic conditions and social trust climates in Europe over ten years: An ecological analysis of change. Journal of Trust Research, 8(1), 68–86.

    Article  Google Scholar 

  • Nagendra, H. (2002). Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography, 22(2), 175–186.

    Article  Google Scholar 

  • Nawaz, R., Abbasi, N. A., Hafiz, I. A., & Khalid, A. (2020). Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environmental and Experimental Botany, 171, 103936.

    Article  CAS  Google Scholar 

  • Nematollahi, S., Fakheran, S., Kienast, F., & Jafari, A. (2020). Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environmental Monitoring and Assessment, 192(8), 487.

    Article  Google Scholar 

  • Okeke, F. O., Eziyi, I. O., Udeh, C. A., & Ezema, E. C. (2020). City as habitat; Assembling the Fragile City. Civil Engineering Journal-Tehran, 6(6), 1143–1154.

    Article  Google Scholar 

  • Peng, J., Ma, J., Du, Y. Y., Zhang, L. Q., & Hu, X. X. (2016). Ecological suitability evaluation for mountainous area development based on conceptual model of landscape structure, function, and dynamics. Ecological Indicators, 61, 500–551.

    Article  Google Scholar 

  • Peng, L., Dong, B., Wang, P., Sheng, S. W., Sun, L., Fang, L., Li, H. R., & Liu, L. P. (2019a). Research on ecological risk assessment in land use model of Shengjin Lake in Anhui province, China. Environmental Geochemistry and Health, 41(6), 2665–2679.

    Article  CAS  Google Scholar 

  • Peng, S. Y., & Li, S. H. (2021). Scale relationship between landscape pattern and water quality in different pollution source areas: A case study of the Fuxian Lake watershed, China. Ecological Indicators, 121, 107136.

    Article  CAS  Google Scholar 

  • Peng, Y., Mi, K., Wang, H. T., Liu, Z. W., Lin, Y. Y., Sang, W. G., & Cui, Q. T. (2019b). Most suitable landscape patterns to preserve indigenous plant diversity affected by increasing urbanization: A case study of Shunyi District of Beijing, China. Urban Forestry & Urban Greening, 38, 33–41.

    Article  Google Scholar 

  • Phillips, H. R. P., Knapp, S., & Purvis, A. (2017). Estimating the potential biodiversity impact of redeveloping small urban spaces: The Natural History Museum’s grounds. PeerJ, 5, e3914.

    Article  Google Scholar 

  • Priadka, P., Brown, G. S., DeWitt, P. D., & Mallory, F. F. (2022). Habitat quality mediates demographic response to climate in a declining large herbivore. Basic and Applied Ecology, 58, 50–63.

    Article  Google Scholar 

  • Qin, P., & Zhang, Z. H. (2021). Evolution of wetland landscape disturbance in Jiaozhou Gulf between 1973 and 2018 based on remote sensing. European Journal of Remote Sensing, 54, 145–154.

    Article  Google Scholar 

  • Qiu, S. J., Peng, J., Zheng, H. N., Xu, Z. H., & Meersmans, J. (2022). How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Science of the Total Environment, 807(2), 150723.

    Article  CAS  Google Scholar 

  • Rao, Y. X., Dai, J. Y., Dai, D. Y., He, Q. S., & Wang, H. Y. (2021). Effect of compactness of urban growth on regional landscape ecological. Security, 10(8), 848.

    Google Scholar 

  • Reaser, J. K., Witt, A., Tabor, G. M., Hudson, P. J., & Plowright, R. K. (2021). Ecological countermeasures for preventing zoonotic disease outbreaks: When ecological restoration is a human health imperative. Restoration Ecology, 29(4), e13357.

    Article  Google Scholar 

  • Rittenhouse, C. D., Tirpak, J. M., & Thompson, F. R. (2022). A scale dynamics approach to integrate landscape conservation within and across jurisdictional boundaries. Landscape Ecology. https://doi.org/10.1007/s10980-022-01456-2

    Article  Google Scholar 

  • Satalova, B., Spulerova, J., Stefunkova, D., Dobrovodska, M., Vlachovicova, M., & Kozelova, I. (2021). Monitoring and evaluating the contribution of the rural development program to high nature value farmland dominated by traditional mosaic landscape in Slovakia. Ecological Indicators, 126, 107661.

    Article  Google Scholar 

  • Shi, H., Shi, T. G., Liu, Q., & Wang, Z. (2021). Ecological vulnerability of tourism scenic spots: Based on remote sensing ecological index. Polish Journal of Environmental Studies, 30(4), 3231–3248.

    Article  Google Scholar 

  • Sochacka, B. A., Bos, J. J., & Dobbie, M. F. (2021). Contextualising landscape perceptions: The role of urban landscape, ecosystem and water system in formation of mental models of a stormwater wetland in Brisbane. Landscape Ecology, 36(9), 2599–2617.

    Article  Google Scholar 

  • Song, Y. A., Wang, M., Sun, X. F., & Fan, Z. M. (2021). Quantitative assessment of the habitat quality dynamics in Yellow River Basin, China. Environmental Monitoring and Assessment, 193(9), 614.

    Article  CAS  Google Scholar 

  • Spielhofer, R., Thrash, T., Hayek, U. W., Gret-Regamey, A., Salak, B., Grubel, J., & Schinazi, V. R. (2021). Physiological and behavioral reactions to renewable energy systems in various landscape types. Renewable & Sustainable Energy Reviews, 135, 110410.

    Article  CAS  Google Scholar 

  • Su, Y., & Wang, Z. N. (2018). 3D reconstruction of submarine landscape ecological security pattern based on virtual reality. Journal of Coastal Research, 83, 615–620. https://doi.org/10.2112/SI83-101.1

    Article  Google Scholar 

  • Tan, J. Q., Li, H., & Lin, W. (2022). Integrating ecosystems and socioeconomic systems to identify ecological security pattern and restoration strategy in a rapidly urbanizing landscape. Frontiers in Environmental Science, 10, 862310.

    Article  Google Scholar 

  • Thiault, L., Marshall, P., Gelcich, S., Collin, A., Chlous, F., & Claudet, J. (2018). Space and time matter in social–ecological vulnerability assessments. Marine Policy, 88, 213–221.

    Article  Google Scholar 

  • Tong, H. L., & Shi, P. J. (2020). Using ecosystem service supply and ecosystem sensitivity to identify landscape ecology security patterns in the Lanzhou-Xining urban agglomeration, China. Journal of Mountain Science, 17(11), 2758–2773.

    Article  Google Scholar 

  • Wang, J., Lin, Y. F., Zhai, T. L., He, T., Qi, Y., Jin, Z. F., & Cai, Y. M. (2018). The role of human activity in decreasing ecologically sound land use in China. Land Degradation & Development, 29(3), 446–460.

    Article  Google Scholar 

  • Wang, J. M., Liu, H., Wu, X. H., Li, C. S., & Wang, X. L. (2017). Effects of different types of mulches and legumes for the restoration of urban abandoned land in semi-arid northern China. Ecological Engineering, 102, 55–63.

    Article  Google Scholar 

  • Wang, J. F., & Xu, C. D. (2017). Geodetector: Principle and prospective. Acta Geographica Sinica, 72(01), 116–134.

    Google Scholar 

  • Wang, Q., & Wang, H.J. (2022). An integrated approach of logistic-MCE-CA-Markov to predict the land use structure and their microspatial characteristics analysis in Wuhan metropolitan area, central china. Environmental Science and Pollution Research, 29(20), 30054–30054.

    Article  Google Scholar 

  • Wang, Q., Wang, H. J., Chang, R. H., Zeng, H. R., & Bai, X. P. (2022). Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, china. Ecological Modelling, 464, 109850.

    Article  Google Scholar 

  • Wartmann, F. M., Stride, C. B., Kienast, F., & Hunziker, M. (2021). Relating landscape ecological metrics with public survey data on perceived landscape quality and place attachment. Landscape Ecology, 36(8), 2367–2393.

    Article  Google Scholar 

  • Wu, L. L., Sun, C. G., & Fan, F. L. (2021). Estimating the characteristic spatiotemporal variation in habitat quality using the InVEST Model-A case study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sensing, 13(5), 1008.

    Article  Google Scholar 

  • Xiao, Y., Tian, K., Huang, H., Wang, J., & Zhou, T. (2021). Coupling and coordination of socioeconomic and ecological environment in Wenchuan earthquake disaster areas: Case study of severely affected counties in southwestern China. Sustainable Cities and Society, 71, 102958.

    Article  Google Scholar 

  • Xie, H. L., Wen, J. M., Chen, Q. R., & Wu, Q. (2021). Evaluating the landscape ecological risk based on GIS: A case-study in the Poyang Lake region of China. Land Degradation & Development, 32(9), 2762–2774.

    Article  Google Scholar 

  • Xu, W. X., Wang, J. M., Zhang, M., & Li, S. J. (2021). Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. Journal of Cleaner Production, 286, 125523.

    Article  Google Scholar 

  • Xu, Q. Y., Shi, Y. J., Qian, L., Zhou, X., Wang, J. H., & Ke, L. J. (2022). Tiered ecological risk assessment combined with ecological scenarios for soil in abandoned industrial contaminated sites. Journal of cleaner production, 341, 130879.

  • Yan, Y. B., Chai, Z. Y., Yang, X. D., Zibibula, S., & Yang, S. T. (2021). The temporal and spatial changes of the ecological environment quality of the urban agglomeration on the northern slope of Tianshan Mountain and the influencing factors. Ecological Indicators, 133, 108380.

    Article  Google Scholar 

  • Yang, Y. Y. (2021). Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecological Indicators, 129, 107967.

    Article  Google Scholar 

  • Yang, Y. M., Nan, Y., Liu, Z. F., Zhang, D., & Sun, Y. H. (2020). Direct and indirect losses of natural habitat caused by future urban expansion in the transnational area of Changbai Mountain. Sustainable Cities and Society, 63, 102487.

    Article  Google Scholar 

  • You, W. B., He, D. J., Wu, L. Y., Hong, W., Zhan, S. H., Qin, D. H., & You, H. M. (2011). Temporal-spatial differentiation and its change in the landscape ecological security of Wuyishan Scenery District. Acta Ecologica Sinica, 31(21), 6317–6327.

    Google Scholar 

  • Yushanjiang, A., Zhang, F., Yu, H. Y., & Kung, H. T. (2018). Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecological Engineering, 113, 94–104.

    Article  Google Scholar 

  • Zang, Z., Zou, X. Q., Zuo, P., Song, Q. C., Wang, C. L., & Wang, J. J. (2017). Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. Ecological Indicators, 72, 142–152.

    Article  Google Scholar 

  • Zhang, L. Q., Wu, J. P., Zhen, Y., & Shu, H. (2004). A GIS-based gradient analysis of urban landscape pattern of Shanghai metropolitan area China. Landscape and Urban Planning, 69(1), 1–16.

    Article  Google Scholar 

  • Zhang, X. M., Du, H. M., Wang, Y., Chen, Y., Ma, L., & Dong, T. X. (2021). Watershed landscape ecological risk assessment and landscape pattern optimization: Take Fujiang River Basin as an example. Human and Ecological Risk Assessment, 27(9–10), 2254–2276.

    Article  CAS  Google Scholar 

  • Zhang, X. P., & Gong, Z. Z. (2018). Spatiotemporal characteristics of urban air quality in China and geographic detection of their determinants. Journal of Geographical Sciences, 28(5), 563–578.

    Article  Google Scholar 

  • Zhang, Z. H., Su, S. L., Xiao, R., Jiang, D. W., & Wu, J. P. (2013). Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Applied Geography, 45, 193–202.

    Article  Google Scholar 

  • Zhao, C., Zhou, Y., Jiang, J. H., Xiao, P. N., & Wu, H. (2021). Spatial characteristics of cultivated land quality accounting for ecological environmental condition: A case study in hilly area of northern Hubei province. China. Science of the Total Environment, 774, 145765.

    Article  CAS  Google Scholar 

  • Zunino, S., Libralato, S., Canu, D., Prato, G., & Solidoro, C. (2021). Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems, 24(7), 1561–1575.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (42171411) and the Project Supported by the Open Fund of Key Laboratory of Monitoring, Evaluation and Early Warning of Territorial Spatial Planning Implementation, Ministry of Natural Resources (LMEE-KF2021006).

Funding

This work is supported by the National Natural Science Foundation of China (42171411) and the Project Supported by the Open Fund of Key Laboratory of Monitoring, Evaluation and Early Warning of Territorial Spatial Planning Implementation, Ministry of Natural Resources (LMEE-KF2021006).

Author information

Authors and Affiliations

Authors

Contributions

Quan Wang contributed to conceptualization and methodology, software, and writing—original draft preparation. Haijun Wang contributed to formal analysis, review, editing, and validation.

Corresponding author

Correspondence to Haijun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to publish

As a result of the research, we unanimously agree that this paper can be published in your journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, H. Evaluation for the spatiotemporal patterns of ecological vulnerability and habitat quality: implications for supporting habitat conservation and healthy sustainable development. Environ Geochem Health 45, 2117–2147 (2023). https://doi.org/10.1007/s10653-022-01328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01328-3

Keywords

Navigation