Skip to main content
Log in

Assessing the risk of human exposure to bioaccessible arsenic from total diet through market food consumption in Chengdu, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To assess the daily intake of total arsenic (tAs) and arsenic speciation and their potential health risks, different food groups, including vegetables, rice, meat, viscera, freshwater fish, and seafood from Chengdu, China were analyzed. The concentrations of tAs ranged from 41.3 to 1185 μg kg−1 with a median of 238 μg kg−1, and 26.0% of tAs in the food groups was of inorganic toxic form. The median concentration of As(V) in rice (184 ± 21.6 μg kg−1) was approximately 2 to 6 times higher than those in other food groups. The bioaccessible inorganic arsenic (iAs) concentrations of the food items obtained from the local markets of Chengdu ranged from 1.07 to 24.6 μg kg−1 (mean of 6.04 μg kg−1). Rice contributed toward the largest amount of daily iAs intake (66.2%). The mean daily iAs intake from vegetable, meat and viscera contributed 10.7%, 12.5% and 6.04% of total iAs intake, respectively. The actual concentration of arsenic in the food exposed to the human body depends on oral bioaccessible fraction. The oral bioaccessibility estimated daily intake (μg kg−1 bw d−1) of tAs and iAs for the residents of Chengdu was 0.32 and 0.16. Health risk assessments carried out based on bioaccessible iAs concentrations showed that the food items were safe for consumption from the iAs perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ahmed, M. K., Shaheen, N., Islam, M. S., Habibullah-Al-Mamun, M., Islam, S., Islam, M. M., Kundu, G. K., & Bhattacharjee, L. (2016). A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh. The Science of the Total Environment, 544, 125–133.

    Article  CAS  Google Scholar 

  • Althobiti, R. A., Sadiq, N. W., & Beauchemin, D. (2018). Realistic risk assessment of arsenic in rice. Food Chemistry, 257, 230–236.

    Article  CAS  Google Scholar 

  • Baeyens, W., Mirlean, N., Bundschuh, J., de Winter, N., Baisch, P., da Silva Junior, F. M. R., & Gao, Y. (2019). Arsenic enrichment in sediments and beaches of Brazilian coastal waters: A review. Science of the Total Environment, 681, 143–154.

    Article  CAS  Google Scholar 

  • Barwick, M., & Maher, W. (2003). Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environment Research, 56, 471–502.

    Article  CAS  Google Scholar 

  • Chanpiwat, P., Hensawang, S., Suwatvitayakorn, P., & Ponsin, M. (2019). Risk assessment of bioaccessible arsenic and cadmium exposure through rice consumption in local residents of the Mae Tao Sub-district, Northwestern Thailand. Environmental Geochemistry and Health, 41, 343–356.

    Article  CAS  Google Scholar 

  • Chen, H. L., Lee, C. C., Huang, W. J., Huang, H. T., Wu, Y. C., Hsu, Y. C., & Kao, Y. T. (2016). Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environmental Science & Pollution Research, 23, 4481–4488.

    Article  CAS  Google Scholar 

  • CSY. (2019). China statistical yearbook (CSY). National Bureau of Statistics of China.

    Google Scholar 

  • Cui, D., Zhang, P., Li, H., Zhang, Z., Luo, W., & Yang, Z. (2020). Biotransformation of dietary inorganic arsenic in a freshwater fish Carassius auratus and the unique association between arsenic dimethylation and oxidative damage. Journal of Hazardous Materials, 391, 122153.

    Article  CAS  Google Scholar 

  • Day, P. L., Nelson, E. J., Bluhm, A. M., Wood-Wentz, C. M., & Jannetto, P. J. (2019). Discovery of an arsenic and mercury co-elevation in the Midwest United States using reference laboratory data. Environmental Pollution, 254, 113049.

    Article  CAS  Google Scholar 

  • de Rosemond, S., Xie, Q., & Liber, K. (2008). Arsenic concentration and speciation in five freshwater fish species from Back Bay near Yellowknife, NT, CANADA. Environmental Monitoring and Assessment, 147, 199–210.

    Article  CAS  Google Scholar 

  • Deng, F., Yamaji, N., Ma, J. F., Lee, S. K., Jeon, J. S., Martinoia, E., Lee, Y., & Song, W. Y. (2018). Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 16, 1691–1699.

    Article  CAS  Google Scholar 

  • Deng, A. Q., Dong, Z. M., Gao, Q., & Hu, J. Y. (2017). Health risk assessment of arsenic in groundwater across China. China Environmental Science, 37, 3556–3565.

    CAS  Google Scholar 

  • Ferrante, M., Napoli, S., Grasso, A., Zuccarello, P., Cristaldi, A., & Copat, C. (2019). Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: A health risk assessment. Food and Chemical Toxicology, 126, 322–331.

    Article  CAS  Google Scholar 

  • Gao, P., Guo, H., Zhang, Z., Ou, C., Hang, J., Fan, Q., He, C., Wu, B., Feng, Y., & Xing, B. (2018). Bioaccessibility and exposure assessment of trace metals from urban airborne particulate matter (PM10 and PM2.5) in simulated digestive fluid. Environmental Pollution, 242, 1669–1677.

    Article  CAS  Google Scholar 

  • GB2762. (2017). Maximum levels of contaminants in foods. China National Standards Management Department.

    Google Scholar 

  • Goessler, W., Schlagenhaufen, C., Kuehnelt, D., Greschonig, H., & Irgolic, K. J. (1997). Can humans metabolize arsenic compounds to arsenobetaine? Applied Organometallic Chemistry, 11, 327–335.

    Article  CAS  Google Scholar 

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123, 305–332.

    Article  CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Eaton, D. W. (2017). Arsenic in the food chain and assessment of population health risks in Bangladesh. Environment Systems and Decisions, 37, 344–352.

    Article  Google Scholar 

  • JECFA. (2010). Summary and conclusions of the Seventy-second meeting of the Joint FAU/WHO Expert Committee on Food Additives, Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.

    Google Scholar 

  • Jia, Y., Wang, L., Li, S., Cao, J., & Yang, Z. (2018). Species-specific bioaccumulation and correlated health risk of arsenic compounds in freshwater fish from a typical mine-impacted river. Science of the Total Environment, 625, 600–607.

    Article  CAS  Google Scholar 

  • Juncos, R., Arcagni, M., Squadrone, S., Rizzo, A., Arribere, M., Barriga, J. P., Battini, M. A., Campbell, L. M., Brizio, P., Abete, M. C., & Ribeiro Guevara, S. (2019). Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation. Ecotoxicology and Environmental Safety, 168, 431–442.

    Article  CAS  Google Scholar 

  • Kar, S., Maity, J. P., Jean, J. S., Liu, C. C., Liu, C. W., Bundschuh, J., & Lu, H. Y. (2011). Health risks for human intake of aquacultural fish: Arsenic bioaccumulation and contamination. Journal of Environmental Science and Health. Part a, Toxic/hazardous Substances & Environmental Engineering, 46, 1266–1273.

    CAS  Google Scholar 

  • Khairul, I., Wang, Q. Q., Jiang, Y. H., Wang, C., & Naranmandura, H. (2017). Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget, 8, 23905–23926.

    Article  Google Scholar 

  • Kollander, B., Sand, S., Almerud, P., Ankarberg, E. H., Concha, G., Barregard, L., & Darnerud, P. O. (2019). Inorganic arsenic in food products on the Swedish market and a risk-based intake assessment. The Science of the Total Environment, 672, 525–535.

    Article  CAS  Google Scholar 

  • Li, G., Sun, G. X., Williams, P. N., Nunes, L., & Zhu, Y. G. (2011). Inorganic arsenic in Chinese food and its cancer risk. Environment International, 37, 1219–1225.

    Article  CAS  Google Scholar 

  • Li, Q. Q., Wang, C. Q., Li, B., Yang, J., & Yang, Y. (2007). Spatial distribution and pollution assessment of soil arsenic in the Chengdu Plain. Chinese Journal of Soil Science, 38, 357–360.

    CAS  Google Scholar 

  • Liao, W., Wu, Y., Wang, G., Zhao, W. B., Li, Y. J., Li, K. M., Chen, Z. Y., Ren, X. W., & Wu, R. R. (2018). Human health risk assessment on Residents’ arsenic ingestion through food in Guangzhou city. Asian Journal of Ecotoxicology, 013, 272–280.

    Google Scholar 

  • Lin, M. C., & Liao, C. M. (2008). Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in Southwestern Taiwan. Food and Chemical Toxicology, 46, 701–709.

    Article  CAS  Google Scholar 

  • Liu, W.-J., McGrath, S. P., & Zhao, F.-J. (2013). Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant and Soil, 376, 423–431.

    Article  Google Scholar 

  • Long, H. Z., Liu, H. B., Wang, T., Zhao, Y., & Matthe, N. K. (2018). Arsenic distribution and pollution assessment in natural ditch water and sediment in the hilly area of Central Sichuan Basin. Acta Scientiae Circumstantiae, 038, 4737–4744.

    CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Munoz, O., Zamorano, P., Garcia, O., & Bastias, J. M. (2017). Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food and Chemical Toxicology, 109, 1125–1134.

    Article  CAS  Google Scholar 

  • Nicholson, F. A., Chambers, B. J., Williams, J. R., & Unwin, R. J. (1999). Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 70, 23–31.

    Article  CAS  Google Scholar 

  • Ouattara, A. A., Yao, K. M., Kinimo, K. C., & Trokourey, A. (2020). Assessment and bioaccumulation of arsenic and trace metals in two commercial fish species collected from three rivers of Côte d’Ivoire and health risks. Microchemical Journal, 154, 104604.

    Article  CAS  Google Scholar 

  • Pedron, T., Freire, B. M., Castro, C. E., Ribal, L. F., & Batista, B. L. (2019). Availability of arsenic in rice grains by in vitro and in vivo (humans) assays. Journal of Trace Elements in Medicine and Biology, 56, 184–191.

    Article  CAS  Google Scholar 

  • Praveena, S. M., & Omar, N. A. (2017). Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis. Food Chemistry, 235, 203–211.

    Article  CAS  Google Scholar 

  • Raab, A., Ferreira, K., Meharg, A. A., & Feldmann, J. (2007). Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? Journal of Experimental Botany, 58, 1333–1338.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Alauddin, M., Alauddin, S. T., Siddique, A. B., Islam, M. R., Agosta, G., Mondal, D., & Naidu, R. (2021). Bioaccessibility and speciation of arsenic in children’s diets and health risk assessment of an endemic area in Bangladesh. Journal of Hazardous Materials, 403, 124064.

    Article  CAS  Google Scholar 

  • Rasheed, H., Kay, P., Slack, R., & Gong, Y. Y. (2018). Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications. The Science of the Total Environment, 634, 366–373.

    Article  CAS  Google Scholar 

  • Rehman, M. U., Khan, R., Khan, A., Qamar, W., Arafah, A., Ahmad, A., Ahmad, A., Akhter, R., Rinklebe, J., & Ahmad, P. (2021). Fate of arsenic in living systems: Implications for sustainable and safe food chains. Journal of Hazardous Materials, 417, 126050.

    Article  CAS  Google Scholar 

  • Saha, J., Dikshit, A., Bandyopadhyay, M., & Saha, K. (1999). A review of arsenic poisoning and its effects on human health. Critical Reviews in Environmental Science and Technology, 29, 281–313.

    Article  CAS  Google Scholar 

  • Shao, D., Kang, Y., Cheng, Z., Wang, H., Huang, M., Wu, S., Chen, K., & Wong, M. H. (2013). Hair mercury levels and food consumption in residents from the Pearl River Delta: South China. Food Chemistry, 136, 682–688.

    Article  CAS  Google Scholar 

  • Sharafi, K., Nodehi, R. N., Mahvi, A. H., Pirsaheb, M., Nazmara, S., Mahmoudi, B., & Yunesian, M. (2019). Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model—Comparison of calculated human health risk from raw, cooked and digested rice. Food Chemistry, 299, 125126.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35, 743–759.

    Article  CAS  Google Scholar 

  • Tao, S., Lu, Y., Zhang, D., Yang, Y., Yang, Y., Lu, X., & Sai, D. (2009). Assessment of oral bioaccessibility of organochlorine pesticides in soil using an in vitro gastrointestinal model. Environmental Science and Technology, 43, 4524–4529.

    Article  CAS  Google Scholar 

  • Taylor, V., Goodale, B., Raab, A., Schwerdtle, T., Reimer, K., Conklin, S., Karagas, M. R., & Francesconi, K. A. (2017). Human exposure to organic arsenic species from seafood. The Science of the Total Environment, 580, 266–282.

    Article  CAS  Google Scholar 

  • Upadhyay, M. K., Shukla, A., Yadav, P., & Srivastava, S. (2019). A review of arsenic in crops, vegetables, animals and food products. Food Chemistry, 276, 608–618.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk assessment guidance for superfund volume I human health evaluation manual (Part A) Interim Final. USEPA.

    Google Scholar 

  • USEPA. (1996). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices SW-846. USEPA.

    Google Scholar 

  • USEPA. (2000). Guidance for assessing chemical contaminant data for use in fish advisories. USEPA.

    Google Scholar 

  • USEPA. (2019). Integrated risk information system (IRIS) summary table. United State Environmental Protection Agency (USEPA.

    Google Scholar 

  • Wan, J. Y., Shi, Y. G., Wu, R. H. , Li, J. G., Weng, L., Ai, M., Ou, D. Y. (2014). Investigation of arsenic pollution in surrounding environment of the phosphate mine. Progress in Veterinary Medicine, 11, 113–115.

  • Wang, P., Wang, S. L., Liu, S. Q., Li, Y. X., He, M. C., & Lin, C. Y. (2010). Occurrence, speciation, source and geochemical cycle of arsenic. Environmental Science & Technology, 33, 90–97.

    CAS  Google Scholar 

  • Wang, H. S., Sthiannopkao, S., Du, J., Chen, Z. J., Kim, K. W., Mohamed Yasin, M. S., Hashim, J. H., Wong, C. K., & Wong, M. H. (2011). Daily intake and human risk assessment of organochlorine pesticides (OCPs) based on Cambodian market basket data. Journal of Hazardous Materials, 192, 1441–1449.

    Article  CAS  Google Scholar 

  • Waxman, S., & Anderson, K. C. (2001). History of the development of arsenic derivatives in cancer therapy. The Oncologist, 6(Suppl 2), 3–10.

    Article  CAS  Google Scholar 

  • Xie, Q., Wang, Y., Li, S., Zhang, C., Tian, X., Cheng, N., Zhang, Y., & Wang, D. (2021). Total mercury and methylmercury in human hair and food: Implications for the exposure and health risk to residents in the Three Gorges Reservoir Region, China. Environmental Pollution, 282, 117041.

    Article  CAS  Google Scholar 

  • Xiong, X., Yanxia, L., Wei, L., Chunye, L., Wei, H., & Ming, Y. (2010). Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resources, Conservation and Recycling, 54, 985–990.

    Article  Google Scholar 

  • Yang, Q., & Zhou, M. (2018). Interpreting gentrification in Chengdu in the post-socialist transition of China: A sociocultural perspective. Geoforum, 93, 120–132.

    Article  Google Scholar 

  • Zacs, D., Perkons, I., Abdulajeva, E., Pasecnaja, E., Bartkiene, E., & Bartkevics, V. (2021). Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDD), dechlorane-related compounds (DRCs), and emerging brominated flame retardants (EBFRs) in foods: The levels, profiles, and dietary intake in Latvia. Science of the Total Environment, 752, 141996.

    Article  CAS  Google Scholar 

  • Zavala, Y. J., Gerads, R., Gorleyok, H., & Duxbury, J. M. (2008). Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science and Technology, 42, 3861–3866.

    Article  CAS  Google Scholar 

  • Zhao, F. J., McGrath, S. P., & Meharg, A. A. (2010). Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61, 535–559.

    Article  CAS  Google Scholar 

  • Zhou, Z., Tan, Q., Liu, H., Deng, Y., Wu, K., Lu, C., & Zhou, X. (2019). Emission characteristics and high-resolution spatial and temporal distribution of pollutants from motor vehicles in Chengdu, China. Atmospheric Pollution Research, 10, 749–758.

    Article  CAS  Google Scholar 

  • Zhuang, P., Zhang, C., Li, Y., Zou, B., Mo, H., Wu, K., Wu, J., & Li, Z. (2016). Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test. Food Chemistry, 213, 206–214.

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Key Research and Development Projects of Sichuan Province (2021YFN0018), National Natural Science Foundation of China (No. 21507095) and Sichuan Provincial Youth Science and Technology Fund (No. 2017JQ0035).

Author information

Authors and Affiliations

Authors

Contributions

CZ: Writing—original draft. ZBY: Investigation, data curation. XXX: Supervision. ZC: Writing—review & editing.

Corresponding author

Correspondence to Zhang Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The manuscript did not contain any reporting studies involving human data.

Consent for publication

The manuscript does not contain any individual person data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Yang, ZB., Xu, XX. et al. Assessing the risk of human exposure to bioaccessible arsenic from total diet through market food consumption in Chengdu, China. Environ Geochem Health 45, 2065–2076 (2023). https://doi.org/10.1007/s10653-022-01325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01325-6

Keywords

Navigation