Skip to main content
Log in

A comprehensive study of radon in drinking waters of Hanumangarh district and the assessment of resulting dose to local population

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Study of radon concentration in drinking water from different sources (groundwater and surface water) used across the Hanumangarh district of Rajasthan, India, was done using scintillation-based detector. The concentration of radon in surface water varied from 0.12 to 2.07 Bq/l with an average value of 0.62 Bq/l and a standard deviation of 0.55 Bq/l and in groundwater samples varied from 1.61 to 8.73 Bq/l with an average value of 4.8 Bq/l and a standard deviation of 2.24 Bq/l. The ingestion and inhalation dose were calculated to assess the health risk for infants, children and adults. The resulting average annual effective dose has been found to be considerably lower than the recommended safe limit of 0.1 msv/y (WHO, In: Incorporating first and second addenda, third ed. WHO Press, Geneva. 3rd ed. World Health Organisation, Geneva, Switzerland, 2008). It can be concluded that radon in water does not pose a significant radiological health risk to the population of the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be provided upon request.

References

  • Andrews, J. N., & Wood, D. F. (1972). Mechanism of radon realize in rock matrices and entry into groundwaters. Transactions of the Institution of Mining and Metallurgy, 81, 198–209.

    CAS  Google Scholar 

  • Auvinen, A., et al. (2005). Radon and other natural radionuclides in drinking water and risks of stomach cancer: A case–cohort study in Finland. International Journal of Cancer, 10, 109–113.

    Article  Google Scholar 

  • Ball, T. K., Cameron, D. G., Colman, T. B., & Roberts, P. D. (1991). Quarterly Journal of Engineering Geology and Hydrogeology, 24, 169–182. https://doi.org/10.1144/GSL.QJEG.1991.024.02.01

    Article  Google Scholar 

  • Bonotto, D. M., & Caprioglio, L. (2002). Radon in groundwater from guarany aquifer, South America: Environmental and exploration implications. Applied Radiation and Isotopes, 57(6), 931–940.

    Article  CAS  Google Scholar 

  • Bourai, A. A., Gusain, G. S., Rautela, B. S., Joshi, V., Prasad, G., & Ramola, R. C. (2012). Variations in radon concentration in groundwater of Kumaon Himalaya, India. Radiation Protection Dosimetry, 152, 55–57.

    Article  CAS  Google Scholar 

  • Brudecki, K., Li, W. B., Meisenberg, O., Tschiersch, J., Hoeschen, C., & Oech, U. (2014). Age dependent inhalation dose to members of the public from indoor short-lived radon progeny. Radiation and Environmental Biophysics, 53(3), 535–549.

    Article  CAS  Google Scholar 

  • Brutsaert, W. F., Norton, S. A., Hess, C. T., & Williams, J. S. (1981). Geologic and hydrologic factors controlling radon-222 in ground water in maine. Groundwater, 19, 407–417. https://doi.org/10.1111/j.1745-6584.1981.tb03488.x

    Article  CAS  Google Scholar 

  • Central Ground Water Board, Ministry of Water Resources, Government of India, Western Region, Jaipur, (2013).

  • Chen, J. (2019). A discussion on issues with radon in drinking water. Radiation Protection Dosimetry, 185(4), 526–531. https://doi.org/10.1093/rpd/ncz035

    Article  Google Scholar 

  • Duggal, V., Mehra, R., & Rani, A. (2013). Analysis of radon concentration in drinking water in Hanumangarh district of Rajasthan India. Radiation Protection and Environment, 36(2), 65.

    Article  Google Scholar 

  • Duggal, V., Rani, A., & Mehra, R. (2012). In situ measurements of radon level in groundwater in Northern Rajasthan India. Advances in Applied Science Research, 3(6), 3825–3830.

    Google Scholar 

  • Duggal, V., Sharma, S., & Mehra, R. (2019). Risk assessment of radon in drinking water in Khetri copper belt of Rajasthan India. Chemosphere, 239, 124782. https://doi.org/10.1016/j.chemosphere.2019.124782

    Article  CAS  Google Scholar 

  • EURATOM. (2013). Council Directing 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation.

  • Girault, F., Perrier, F., & TadeuszPrzylibski, A. T. A. (2016). Radon-222 and radium-226 occurrence in water: A review. Geological Society London Special Publications, 451, 131–154. https://doi.org/10.1144/SP451.3

    Article  Google Scholar 

  • Hess, C. T., Michel, J., Horton, T. R., Prichard, H. M., & Coniglio, W. A. (1985). The occurrence of radioactivity in public water supplies in the United States. Health Physics, 48(5), 553–586.

    Article  CAS  Google Scholar 

  • ICRP. (1994). Human respiratory tract model for radiological protection. ICRP Publication 66 Ann. ICRP 24 (1–3).

  • ICRP. (2017). Occupational intakes of radionuclides: Part 3. ICRP Publication 137 Ann. ICRP 46(3/4).

  • Ilani, S., Minster, T., Kronfeld, J., & Even, O. (2006). The source of anomalous radioactivity in the springs bordering the Sea of Galilee Israel. Journal of Environmental Radioactivity, 85, 137e146.

    Article  Google Scholar 

  • Kansal, S., Mehra, R., & Singh, N. P. (2011). Uranium concentration in groundwater samples belonging to some areas of Western Haryana, India using Fission track registration technique. Journal of Public Health and Epidemiology, 3(8), 352–357.

    Google Scholar 

  • Kanse, S.D., Mishra, R., Gaware, J.J., Sahoo, B.K., Rout, R.P., Prajith, R., Agarwal, T.K., Sapra, B.K., 2016. Handbook on radon transport models and measurement methods. Radiological physics and advisory division, Bhabha Atomic Research Centre, Mumbai.

  • Kendall, G. M., & Smith, T. J. (2003). Doses to organs and tissues from radon and its decay products. Journal of Radiation Protection and Research, 22(4), 389–406.

    Google Scholar 

  • Kumar, R., Mathur, A. K., Sengupta, D., & Prasad, R. (2005). Radon activity and exhalation rates measurements in fly ash from thermal power plant. Radiation Measurement, 40(2005), 638–341.

    Article  CAS  Google Scholar 

  • Loomis, D. P. (1987). Radon-222 concentration and aquifer lithology in North Carolina. Groundwater Monitoring & Remediation, 7(2), 33–39.

    Article  CAS  Google Scholar 

  • Love, S. K. (1951). Natural radioactivity of water. Industrial & Engineering Chemistry, 43(7), 1541–1544.

    Article  CAS  Google Scholar 

  • Mathur, A. K., Kumar, R., Mishra, M., Sengupta, D., & Prasad, R. (2008a). An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash sample. Applied Radiation and Isotopes, 66(2008), 401–406.

    Article  Google Scholar 

  • Mathur, A. K., Kumar, R., Mishra, M., Sengupta, D., & Prasad, R. (2008b). Estimation of radon exhalation rate, natural radioactivity and radiaition doses in fly ash samples from Durgapur thermal power plant, West Bengal India. Journal of Environmental Radioactivity, 99(2008), 1289–1293.

    Article  Google Scholar 

  • Mehra, R., Bangotra, P., & Kaur, K. (2015). 222Rn and 220Rn levels of Mansa and Muktsar district of Punjab India. Frontiers in Environmental Science, 3, 37.

    Article  Google Scholar 

  • Mittal, S., Rani, A., & Mehra, R. (2015). Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India. Journal of Radiation Research and Applied Sciences. https://doi.org/10.1016/j.jrras.2015.10.006

    Article  Google Scholar 

  • Naskar, A. K., Gazi, M., Barman, C., Chowdhury, S., Mondal, M., Ghosh, D., Sinha, B., & Deb, A. (2018). Estimation of underground water radon danger in Bakreswar and Tantloi Geothermal Region, India. Journal of Radioanalytical and Nuclear Chemistry, 315(2), 273–283.

    Article  CAS  Google Scholar 

  • Nazir, S., Simnani, S., et al. (2021). Radon mapping in groundwater and indoor environs of Budgam, Jammu and Kashmir. Journal of Radioanalytical and Nuclear Chemistry, 329, 923–934.

    Article  CAS  Google Scholar 

  • Nazir, S., Simnani, S., Sahoo, B. K., Mishra, R., Sharma, T., & Masood, S. (2020). Dose estimation of radioactivity in groundwater of Srinagar city, Northwest Himalaya, employing fluorimetric and scintillation techniques. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00576-5

    Article  Google Scholar 

  • NRC. (1999). National Research Council committee on Risk Assessment of exposure to radon in drinking water. National Academic Press.

    Google Scholar 

  • Nuccetelli, C., Rusconi, R., & Forte, M. (2012). Radioactivity in drinking water: regulations, monitoring results and radiation protection issues. Annalidell'Istitutosuperiore di sanità, 48, 362–373.

  • Otton, J. K. (1992). The geology of radon. Government printing office.

    Book  Google Scholar 

  • Rani, S., Kansal, S., Singla, A. K., & Mehra, R. (2021b). A comprehensive study of exhalation rates in soil samples to understand the high risk potential area in Barnala and Moga districts of Punjab, India. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-021-08129-5

    Article  Google Scholar 

  • Rani, S., Kansal, S., Singla, A. K., & Mehra, R. (2021a). Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab India. Environment Geochemistry and Health. https://doi.org/10.1007/s10653-021-01012-y

    Article  Google Scholar 

  • Rani, A., Mehra, R., & Duggal, V. (2013). Radon monitoring in groundwater samples from some areas of northern Rajasthan, India, using a RAD7 detector. Radiation Protection Dosimetry, 153(4), 496–501.

    Article  CAS  Google Scholar 

  • Sahoo, B. K., Sapra, B. K., Kanse, S. D., Gware, J. J., & Mayya, Y. S. (2013). Anew pinhole discriminated 222Rn/220Rn passive measurement device with single entry face. Radiation Measurement, 58, 52–60.

    Article  CAS  Google Scholar 

  • Sethy, N. K., Jha, V. N., Ravi, P. M., & Tripathi, R. M. (2015). Assessment of human exposure to dissolved radon in groundwater around the uranium industry of Jaduguda, Jharkhand India. Current Science, 109, 1855–1860.

    Article  CAS  Google Scholar 

  • Sharma, S., Duggal, V., Srivastava, A. K., Mehra, R., & Rani, A. (2017). Radon concentration in groundwater and associated effective dose assessment in Western Haryana, India. International Journal of Innovative Research in Sciencenter Engineering, 3, 69–78.

    Google Scholar 

  • Singh, L.M., Kumar, M., Sahoo, B.K., Sapra, B.K., & Kumar, R. (2016). Study of radon, thoron exhalation and natural radioactivity in coal and fly ash samples of Kota super thermal power plant, Rajasthan, India. Radiation Protection and Dosimetry, 1–4.

  • Singh, B., Kant, K., Garg, M., Singh, A., Sahoo, B. K., & Sapra, B. K. (2019). A comparative study of radon levels in underground and surface water samples of Faridabad district of Southern Haryana, India. Journal of Radioanalytical and Nuclear Chemistry, 319(3), 907–916.

    Article  CAS  Google Scholar 

  • Singh, L. M., Kumar, M., Sahoo, B. K., Sapra, B. K., & Kumar, R. (2015). Study of natural radioactivity, radon exhalation and radiation doses in coal and fly ash samples from thermal power plants India. Physics Procedia, 80(2015), 120–124.

    Article  CAS  Google Scholar 

  • Singla, A. K., Kansal, S., Rani, S., & Mehra, R. (2021c). Radiological risk assessment due to attached/unattached fractions of radon and thoron progeny in Hanumangarh district Rajasthan. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-021-07930-6

    Article  Google Scholar 

  • Singla, A. K., Kansal, S., & Mehra, R. (2021a). Dose distribution to individual tissues and organs due to exposure of alpha energies from radon and thoron to local population of Hanumangarh, Rajasthan, India. Journal of Radioanalytical and Nuclear Chemistry, 327(3), 1073–1085.

    Article  CAS  Google Scholar 

  • Singla, A. K., Kansal, S., & Mehra, R. (2021b). Quantification of radon contamination in drinking water of Rajasthan, India. Journal of Radioanalytical and Nuclear Chemistry, 327(3), 1149–1157.

    Article  CAS  Google Scholar 

  • Srinivasa, E., Rangaswamy, D. R., & Sannappa, J. (2015). Determination of radon activity concentration in drinking water and evaluation of the annual effective dose in Hassan district, Karnataka state, India. Journal of Radioanalytical and Nuclear Chemistry, 305(2), 665–673.

    Article  CAS  Google Scholar 

  • Tanner, A.B. (1980). Radon migration in the ground: a supplementary review.

  • UNSCEAR. (1993). Report Sources and effects of ionizing radiation. Report to the general assembly with scientific report.

  • UNSCEAR. (2000). Report, Volume 1, Annex B: Exposure from Natural Radiations Sources, Annexure A.

  • USEPA. (2000). Radionuclides notice of data availability. Technical support document. United States Environmental Protection Agency.

  • WHO (2008). World health organization guidelines for drinking water quality. In: Incorporating first and second addenda, third ed. WHO Press, Geneva. (2008), 2008, 3rd ed. World Health Organisation, Geneva, Switzerland.

  • WHO. (2009). WHO handbook on indoor radon: A public health perspective. World Health Organization.

    Google Scholar 

  • World Health Organization. (2018). Management of radioactivity in drinking-water.

  • Ye, W., et al. (1998). Mortality and cancer incidence in Misasa, Japan, a spa area with elevated radon levels. Japanese Journal of Cancer Research, 89(8), 789–796.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the BRNS-DAE-GoI (Grant No. 36(4)/14/29/2016-BRNS/36032) for providing financial assistance, Dr BK Sahoo and his team at RP&AD, BARC Mumbai, India for providing all kind of technical support for the research work. We are extremely thankful to the residents of the study area for their support to carry out the field work.

Funding

The authors are thankful to the BRNS-DAE-GoI (Grant No. 36(4)/14/29/2016-BRNS/36032) for providing financial assistance to carry out research work.

Author information

Authors and Affiliations

Authors

Contributions

Amit Kumar Singla, Sandeep Kanse and Sandeep Kansal have designed the research plan and prepared the manuscript with contribution of Supriya Rani and Rohit Mehra. Amit Kumar Singla and Supriya Rani carried out all the field work for sample collection and analysis in the lab. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sandeep Kansal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interests.

Consent to publish

All authors have read and approved the final manuscript.

Consent to participate

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, A.K., Kanse, S., Kansal, S. et al. A comprehensive study of radon in drinking waters of Hanumangarh district and the assessment of resulting dose to local population. Environ Geochem Health 45, 443–455 (2023). https://doi.org/10.1007/s10653-022-01304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01304-x

Keywords

Navigation