Skip to main content

Spatial distribution, sources identification, and health risk assessment polycyclic aromatic hydrocarbon compounds and polychlorinated biphenyl compounds in total suspended particulates (TSP) in the air of South Pars Industrial region-Iran

Abstract

South Pars Industrial Energy Zone, located in the southwest of Iran along the Persian Gulf coast, encompasses many industrial units in the vicinity of urban areas. This research study investigated the effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on human health and the environment. Suspended particulate matters (SPM) in the air sampled, in summer and winter 2019, from ten stations next to industrial units and residential areas. The samples were analyzed by gas chromatography-mass spectrometry (GC–MS). Spatial distribution maps of pollutants in the region were prepared using GIS software. The highest carcinogenic risk due to PAHs and PCBs measured as (\(6.07\times {10}^{-6}\pm 1.85822\times {10}^{-6}\)) and (\(8.80\times {10}^{-8}\pm 2.76786\times {10}^{-8})\), respectively. According to the US Environmental Protection Agency limit (\(1\times {10}^{-6}\)), the cancer risks from PAH compounds were significant and need further investigation. The PCB cancer risks were within acceptable ranges. The highest adsorption ratios for PAHs were obtained through skin and PCBs by ingestion. The maximum measured non-carcinogenic hazard indexes (HI) turned out to be 0.037 and 0.023 for PAH and PCB, respectively, and were reported as acceptable risks. The predominant source of PAH in industrial areas was liquid fossil combustion, and in urban areas replaced by coal-wood-sugarcane combustion. Petrochemical complexes, flares, power plants (69%), electric waste disposal sites, and commercial pigments (31%) were reported as PCB sources. Industries activities were the most effective factors in producing the highest level of carcinogenic compounds in the region, and it is necessary to include essential measures in the reform programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Data Availability

Some or all data, models that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • (ATSDR). (1995). Toxicological profile for polycyclic aromatic hydrocarbons. Retrieved from https://atsdr.cdc.gov/unavailable.html. Accessed 15 May 2021

  • Abbasi, S., & Keshavarzi, B. (2019). Source identification of total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in PM10 and street dust of a hot spot for petrochemical production: Asaluyeh County, Iran. Sustainable Cities and Society, 45, 214–230. https://doi.org/10.1016/j.scs.2018.11.015

    Article  Google Scholar 

  • Abbasi, S., Keshavarzi, B., Moore, F., Hopke, P. K., Kelly, F. J., & Dominguez, A. O. (2020). Elemental and magnetic analyses, source identification, and oxidative potential of airborne, passive, and street dust particles in Asaluyeh, Iran. Science of the Total Environment, 707, 136132. https://doi.org/10.1016/j.scitotenv.2019.136132

    CAS  Article  Google Scholar 

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Agency, U. E. P. (1991). Human health evaluation manual, supplemental guidance: Standard default exposure factors. In Office of Solid Waste and Emergency Response Washington, DC.

  • Aghadadashi, V., Neyestani, M. R., Mehdinia, A., Riyahi Bakhtiari, A., Molaei, S., Farhangi, M., et al. (2019). Spatial distribution and vertical profile of heavy metals in marine sediments around Iran’s special economic energy zone; Arsenic as an enriched contaminant. Marine Pollution Bulletin, 138, 437–450. https://doi.org/10.1016/j.marpolbul.2018.11.033

    CAS  Article  Google Scholar 

  • Anh, H. Q., Watanabe, I., Tomioka, K., Minh, T. B., & Takahashi, S. (2019). Characterization of 209 polychlorinated biphenyls in street dust from northern Vietnam: Contamination status, potential sources, and risk assessment. Science of the Total Environment, 652, 345–355. https://doi.org/10.1016/j.scitotenv.2018.10.240

    CAS  Article  Google Scholar 

  • Apiratikul, R., Pongpiachan, S., & Hashmi, M. Z. (2020). Health risk assessment of polycyclic aromatic hydrocarbons in coastal soils of Koh Samed Island (Thailand) after the oil spill incident in 2013. Marine Pollution Bulletin, 150, 110736. https://doi.org/10.1016/j.marpolbul.2019.110736

    CAS  Article  Google Scholar 

  • Cetin, B. (2016). Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Science of the Total Environment, 560–561, 160–169. https://doi.org/10.1016/j.scitotenv.2016.04.037

    CAS  Article  Google Scholar 

  • Dumanoglu, Y., Gaga, E. O., Gungormus, E., Sofuoglu, S. C., & Odabasi, M. (2017). Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Science of the Total Environment, 580, 920–935. https://doi.org/10.1016/j.scitotenv.2016.12.040

    CAS  Article  Google Scholar 

  • EPA. (2016). Human Health Tables. https://www3.epa.gov/hudson/tables.htm. Accessed 20 May 2021.

  • EPA. U. (2011). Exposure factors handbook 2011 edition (final). EPA.

    Google Scholar 

  • Franco, C. F. J., de Resende, M. F., de Almeida Furtado, L., Brasil, T. F., Eberlin, M. N., & Netto, A. D. P. (2017). Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niterói, Brazil: Particle size distribution, sources and cancer risk assessment. Science of the Total Environment, 599–600, 305–313. https://doi.org/10.1016/j.scitotenv.2017.04.060

    CAS  Article  Google Scholar 

  • Gope, M., Masto, R. E., George, J., & Balachandran, S. (2018). Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustainable Cities and Society, 38, 616–626. https://doi.org/10.1016/j.scs.2018.01.006

    Article  Google Scholar 

  • Goudarzi, G., Baboli, Z., Moslemnia, M., Tobekhak, M., Tahmasebi Birgani, Y., Neisi, A., et al. (2021). Assessment of incremental lifetime cancer risks of ambient air PM10-bound PAHs in oil-rich cities of Iran. Journal of Environmental Health Science and Engineering, 19(1), 319–330. https://doi.org/10.1007/s40201-020-00605-6

    CAS  Article  Google Scholar 

  • Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, Pcbs and trace metal evidence. Chemosphere, 85(2), 195–202. https://doi.org/10.1016/j.chemosphere.2011.06.032

    CAS  Article  Google Scholar 

  • Ha, S. Y., Kim, G. B., Yim, U. H., Shim, W. J., Hong, S. H., & Han, G. M. (2012). Particle-size distribution of polycyclic aromatic hydrocarbons in urban road dust of masan, Korea. Archives of Environmental Contamination and Toxicology, 63(2), 189–198. https://doi.org/10.1007/s00244-012-9765-4

    CAS  Article  Google Scholar 

  • Han, Y., Chen, Y., Feng, Y., Song, W., Cao, F., Zhang, Y., et al. (2020). Different formation mechanisms of PAH during wood and coal combustion under different temperatures. Atmospheric Environment, 222, 117084.

    CAS  Article  Google Scholar 

  • Hardell, S., Tilander, H., Welfinger-Smith, G., Burger, J., & Carpenter, D. O. (2010). Levels of polychlorinated biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska. PLoS ONE, 5(8), e12396. https://doi.org/10.1371/journal.pone.0012396

    CAS  Article  Google Scholar 

  • Hornbuckle, K., & Robertson, L. (2010). Polychlorinated Biphenyls (PCBs): Sources, Exposures, Toxicities. Environmental Science & Technology, 44(8), 2749–2751. https://doi.org/10.1021/es100801f

    CAS  Article  Google Scholar 

  • Iwegbue, C. M., Obi, G., Uzoekwe, S. A., Egobueze, F. E., Odali, E. W., Tesi, G. O., et al. (2019). Distribution, sources and risk of exposure to polycyclic aromatic hydrocarbons in indoor dusts from electronic repair workshops in southern Nigeria. Emerging Contaminants, 5, 23–30. https://doi.org/10.1016/j.emcon.2018.12.003

    Article  Google Scholar 

  • Jalilisadrabad, S., & Zabetian Targhi, E. (2020). Investigating the location of organizational housing on the outskirts of cities (Study Sample: Accommodation of Bandar Abbas gas Condensate Refinery Staff). Naqshejahan-Basic Studies and New Technologies of Architecture and Planning, 10(1), 19–31.

    Google Scholar 

  • Jung, K. H., Yan, B., Chillrud, S. N., Perera, F. P., Whyatt, R., Camann, D., et al. (2010). Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. International Journal of Environmental Research and Public Health, 7(5), 1889–1900. https://doi.org/10.3390/ijerph7051889

    CAS  Article  Google Scholar 

  • Kamal, A., Cincinelli, A., Martellini, T., & Malik, R. N. (2015). A review of PAH exposure from the combustion of biomass fuel and their less surveyed effect on the blood parameters. Environmental Science and Pollution Research, 22(6), 4076–4098. https://doi.org/10.1007/s11356-014-3748-0

    CAS  Article  Google Scholar 

  • Kaveh Pishghadam, H., & Esmaeeli, H. (2021). A system dynamics model for evaluating the firms’ capabilities in maintenance outsourcing and analyzing the profitability of outsourcing. Scientia Iranica. https://doi.org/10.24200/sci.2021.55108.4080

    Article  Google Scholar 

  • Kermani, M., Jonidi Jafari, A., Gholami, M., Taghizadeh, F., Masroor, K., Abdolahnejad, A., et al. (2021). Characterisation of PM2.5—bound PAHs in outdoor air of Karaj megacity: The effect of meteorological factors. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1906425

    Article  Google Scholar 

  • Kiani, B., & Ali Pourfakhraei, M. (2010). A system dynamic model for production and consumption policy in Iran oil and gas sector. Energy Policy, 38(12), 7764–7774. https://doi.org/10.1016/j.enpol.2010.08.036

    Article  Google Scholar 

  • Koukoulakis, K. G., Kanellopoulos, P. G., Chrysochou, E., Costopoulou, D., Vassiliadou, I., Leondiadis, L., & Bakeas, E. (2020). Atmospheric Concentrations and Health Implications of PAHs, PCBs and PCDD/Fs in the Vicinity of a Heavily Industrialized Site in Greece. Applied Sciences, 10(24), 9023.

    CAS  Article  Google Scholar 

  • Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476–477, 522–531. https://doi.org/10.1016/j.scitotenv.2014.01.055

    CAS  Article  Google Scholar 

  • Liu, J., Zhang, J., Zhan, C., Liu, H., Zhang, L., Hu, T., et al. (2019a). Polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Huanggang, Central China: Status, sources and human health risk assessment. Aerosol and Air Quality Research, 19(2), 221–233. https://doi.org/10.4209/aaqr.2018.02.0048

    CAS  Article  Google Scholar 

  • Liu, R., Ma, S., Li, G., Yu, Y., & An, T. (2019b). Comparing pollution patterns and human exposure to atmospheric PBDEs and PCBs emitted from different e-waste dismantling processes. Journal of Hazardous Materials, 369, 142–149. https://doi.org/10.1016/j.jhazmat.2019.02.029

    CAS  Article  Google Scholar 

  • Liu, W., Zhao, J., Xu, S., Liu, G.-B., Tu, Y., Shi, P., & Li, A.-M. (2020). Concentrations, sources, and potential human health risks of PCDD/Fs, dl-PCBs, and PAHs in rural atmosphere around chemical plants in Jiangsu Province, China. Bulletin of Environmental Contamination and Toxicology, 104(6), 846–851. https://doi.org/10.1007/s00128-020-02864-3

    CAS  Article  Google Scholar 

  • Ma, W.-L., Zhu, F.-J., Liu, L.-Y., Jia, H.-L., Yang, M., & Li, Y.-F. (2020). PAHs in Chinese atmosphere Part II: Health risk assessment. Ecotoxicology and Environmental Safety, 200, 110774. https://doi.org/10.1016/j.ecoenv.2020.110774

    CAS  Article  Google Scholar 

  • Maertens, R. M., Yang, X., Zhu, J., Gagne, R. W., Douglas, G. R., & White, P. A. (2008). Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environmental Science & Technology, 42(5), 1747–1753. https://doi.org/10.1021/es702449c

    CAS  Article  Google Scholar 

  • Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  • Mihankhah, T., Saeedi, M., & Karbassi, A. (2020). Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicology and Environmental Safety, 187, 109838. https://doi.org/10.1016/j.ecoenv.2019.109838

    CAS  Article  Google Scholar 

  • Momayez, A. (2019). Environmental Impact Assessment (EIA) of south pars special zone (ASSALOOYEH) IN creating a stable environment using the Leopold matrix. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. https://doi.org/10.14456/ITJEMAST.2019.21

    Article  Google Scholar 

  • Naddafi, K., Ehrampoush, M., Jafari, V., Nabizadeh, R., & Younesian, M. (2009). Complete evaluation of suspended air particles and their composition in the central area of Yazd City. The Journal of Shahid Sadoughi University of Medical Sciences, 16(4), 26–32.

    Google Scholar 

  • Nayak, Y., Sahu, Y. K., Patel, K. S., Sharma, S., Hung, C.-C., Martín-Ramos, P., & Yurdakul, S. (2021). Distribution and sources of polychlorinated biphenyls in air, dust, and sediment from India. Journal of Hazardous, Toxic, and Radioactive Waste, 25(1), 05020004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000560

    CAS  Article  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300. https://doi.org/10.1016/0273-2300(92)90009-X

    CAS  Article  Google Scholar 

  • Odabasi, M., Dumanoglu, Y., Kara, M., Altiok, H., Elbir, T., & Bayram, A. (2017). Spatial variation of PAHs and PCBs in coastal air, seawater, and sediments in a heavily industrialized region. Environmental Science and Pollution Research, 24(15), 13749–13759. https://doi.org/10.1007/s11356-017-8991-8

    CAS  Article  Google Scholar 

  • Parlato, M. C. M., Valenti, F., & Porto, S. M. C. (2020). Covering plastic films in greenhouses system: A GIS-based model to improve post use sustainable management. Journal of Environmental Management, 263, 110389. https://doi.org/10.1016/j.jenvman.2020.110389

    Article  Google Scholar 

  • Pohl, A., & Kostecki, M. (2021). Characteristics, distribution, sources, and ecological risk of persistent organic pollutants (PAHs, PCBs) in the bottom sediments of a potamic ecosystem, in conditions of urban-industrial anthropopressure. Desalination and Water Treatment, 215, 80–89. https://doi.org/10.5004/dwt.2021.26756

    CAS  Article  Google Scholar 

  • Rostami, S., Abessi, O., & Amini-Rad, H. (2019). Assessment of the toxicity, origin, biodegradation and weathering extent of petroleum hydrocarbons in surface sediments of Pars Special Economic Energy Zone, Persian Gulf. Marine Pollution Bulletin, 138, 302–311. https://doi.org/10.1016/j.marpolbul.2018.11.034

    CAS  Article  Google Scholar 

  • Rovira, J., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2021). Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. Science of the Total Environment, 787, 147550. https://doi.org/10.1016/j.scitotenv.2021.147550

    CAS  Article  Google Scholar 

  • Sari, M. F., Córdova Del Águila, D. A., Tasdemir, Y., & Esen, F. (2020a). Atmospheric concentration, source identification, and health risk assessment of persistent organic pollutants (POPs) in two countries: Peru and Turkey. Environmental Monitoring and Assessment, 192(10), 655. https://doi.org/10.1007/s10661-020-08604-8

    CAS  Article  Google Scholar 

  • Sari, M. F., Esen, F., Cordova Del Aguila, D. A., & Kurt Karakus, P. B. (2020b). Passive sampler derived polychlorinated biphenyls (PCBs) in indoor and outdoor air in Bursa, Turkey: Levels and an assessment of human exposure via inhalation. Atmospheric Pollution Research, 11(6), 71–80. https://doi.org/10.1016/j.apr.2020.03.001

    CAS  Article  Google Scholar 

  • Sarkheil, H. (2021). Risk and incident analysis on key safety performance indicators and anomalies feedback in south pars gas complex. Results in Engineering, 9, 100210. https://doi.org/10.1016/j.rineng.2021.100210

    Article  Google Scholar 

  • Siemering, G. S., & Thiboldeaux, R. (2021). Background concentration, risk assessment and regulatory threshold development: Polycyclic aromatic hydrocarbons (PAH) in Milwaukee, Wisconsin Surface Soils. Environmental Pollution, 268, 115772.

    CAS  Article  Google Scholar 

  • Song, Y., Wu, P., Li, Q., Liu, Y., & Karunaratne, L. (2021). Hybrid nonlinear and machine learning methods for analyzing factors influencing the performance of large-scale transport infrastructure. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2021.3112458

    Article  Google Scholar 

  • Tarassoli, A., Sari, A. E., & Bahramifar, N. (2019). Investigation of gaseous pollutants in residential-industrial area: Ambient levels, temporal variation and health risk assessment. Journal of Air Pollution and Health, 4(2), 121–132. https://doi.org/10.18502/japh.v4i2.1236

    Article  Google Scholar 

  • Tucca, F., Luarte, T., Nimptsch, J., Woelfl, S., Pozo, K., Casas, G., et al. (2020). Sources and diffusive air–water exchange of polycyclic aromatic hydrocarbons in an oligotrophic North-Patagonian lake. Science of the Total Environment, 738, 139838. https://doi.org/10.1016/j.scitotenv.2020.139838

    CAS  Article  Google Scholar 

  • Tuyen, L. H., Tue, N. M., Suzuki, G., Misaki, K., Viet, P. H., Takahashi, S., & Tanabe, S. (2014). Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi—Vietnam: Contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment. Science of the Total Environment, 491–492, 246–254. https://doi.org/10.1016/j.scitotenv.2014.01.086

    CAS  Article  Google Scholar 

  • US-EPA. (2019). IRIS Database.

  • Us, E. (1993). Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons, EPA/600/R/089.

  • Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-Hayes, V., & Nathanail, P. C. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314. https://doi.org/10.1016/j.apgeochem.2014.09.013

    CAS  Article  Google Scholar 

  • Wang, H., Chen, Z., Walker, T. R., Wang, Y., Luo, Q., Wu, H., & Wang, X. (2021a). Characterization, source apportionment and risk assessment of PAHs in urban surface dust in Shenyang city, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-01134-3

    Article  Google Scholar 

  • Wang, P., Zhu, X., Henkelmann, B., & Schramm, K.-W. (2021b). The variability of the concentrations of PAHs and PCBs in the Urban Air of Dalian with ambient temperature by semipermeable membrane devices monitoring. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2021.1987933

    Article  Google Scholar 

  • Wang, W., Huang, M.-J., Kang, Y., Wang, H.-S., Leung, A. O. W., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409(21), 4519–4527. https://doi.org/10.1016/j.scitotenv.2011.07.030

    CAS  Article  Google Scholar 

  • Wang, Y., Hu, J., Lin, W., Wang, N., Li, C., Luo, P., et al. (2016). Health risk assessment of migrant workers’ exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: Indication for a new wealth gap in environmental rights. Environment International, 87, 33–41. https://doi.org/10.1016/j.envint.2015.11.009

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A. Ghadrshenas acknowledges support from the Islamic Azad University, Branch Bushehr in the College of Environmental Engineering.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

FA and TT: conceptualization, methodology, writing—reviewing and editing. AG: sample preparation and chemical analysis. ARP: writing—reviewing and editing.

Corresponding author

Correspondence to Fazel Amiri.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in place and comply with international, national, and/or institutional standards on research involving Human Participants and/or Animals and Informed Consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghadrshenas, A., Tabatabaie, T., Amiri, F. et al. Spatial distribution, sources identification, and health risk assessment polycyclic aromatic hydrocarbon compounds and polychlorinated biphenyl compounds in total suspended particulates (TSP) in the air of South Pars Industrial region-Iran. Environ Geochem Health (2022). https://doi.org/10.1007/s10653-022-01286-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-022-01286-w

Keywords

  • Polycyclic aromatic hydrocarbons (PAHs)
  • Polychlorinated biphenyls (PCBs)
  • Particulate matter
  • Health risk
  • Origin detection
  • Equivalence of toxicity