Skip to main content

Sedimentation of metals in Sundarban mangrove ecosystem: Dominant drivers and environmental risks

Abstract

Metal contamination from upstream river water is a threat to coastal and estuarine ecosystem. The present study was undertaken to unveil sedimentation processes and patterns of heavy metal deposition along the salinity gradient of a tropical estuary and its mangrove ecosystem. Sediment columns from three representative sites of differential salinity, anthropogenic interference, and sediment deposition pattern were sampled and analyzed for grain size distribution and metal concentrations as a function of depth. Sediments were dominantly of silty-medium sand texture. A suite of fluvial and alluvial processes, and marine depositional forcing control the sediment deposition and associated heavy metal loading in this estuary. The depth profile revealed a gradual increase in heavy metal accumulation in recent top layer sediments and smaller fractions (silt + clay), irrespective of tidal regimes. Alluvial processes and long tidal retention favor accumulation of heavy metals. Enrichment factor (0.52–15), geo-accumulation index (1.4–5.8), and average pollution load index (PLI = 2.0) indicated moderate to higher heavy metal contamination status of this estuary. This study showed that alluvial processes acted as dominant drivers for the accumulation of metals in sediments, which prevailed over the influence of marine processes. Longer tidal retention of the water column favored more accumulation of heavy metals. Metal accumulation in the sediments entails a potential risk of bioaccumulation and biomagnification through the food web, and may increasingly impact estuarine ecology, economy, and ultimately human health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

All used data are presented in tables and figures in the paper.

References

  • Abrahim, G., & Parker, R. (2002). Heavy-metal contaminants in Tamaki Estuary: Impact of city development and growth, Auckland, New Zealand. Environmental Geology, 42(8), 883–890. https://doi.org/10.1007/s00254-002-0593-0

    CAS  Article  Google Scholar 

  • Adebowale, K. O., Agunbiade, F. O., & Olu-Owolabi, B. I. (2009). Trace metal concentrations, site variations and partitioning pattern in water and bottom sediments from coastal area: A case study of Ondo coast, Nigeria. Environmental Research Journal, 3(2), 46–59.

    Google Scholar 

  • Alam, M. A., Gomes, A., Sarkar, S. K., Shuvaeva, O. V., Vishnevetskaya, N. S., Gustaytis, M. A., Bhattachariya, B. D., & Godhantaraman, N. (2010). Trace metal bioaccumulation by soft-bottom polychaetes (Annelida) of Sundarban Mangrove Wetland, India and their potential use as contamination indicator. Bulletin of Environmental Contamination and Toxicology, 85(5), 492–496. https://doi.org/10.1007/s00128-010-0110-1

    CAS  Article  Google Scholar 

  • Alongi, D. M., Ramanathan, A. L., Kannan, L., Tirendi, F., Trott, L. A., & Prasad, M. B. K. (2005). Influence of human-induced disturbance on benthic microbial metabolism in the Pichavaram mangroves, Vellar-Coleroon estuarine complex, India. Marine Biology, 147(4), 1033–1044. https://doi.org/10.1007/s00227-005-1634-5

    Article  Google Scholar 

  • Angusamy, N., & Rajamanickam, G. V. (2007). Coastal processes of Central Tamil Nadu, India: Clues from grain size studies. Oceanologia, 49(1), 41–57.

    Google Scholar 

  • Antoniadis, V., Golia, E. E., Shaheen, S. M., & Rinklebe, J. (2017). Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environmental Geochemistry and Health, 39(2), 319–330. https://doi.org/10.1007/s10653-016-9882-5

    CAS  Article  Google Scholar 

  • Awal, M. A. (2014). Invention on correlation between the chemical composition of the surface sediment and water in the mangrove forest of the Sundarbans, Bangladesh, and the regeneration, growth and dieback of the forest trees and people health. Science Innovation, 2(2), 11–21. https://doi.org/10.11648/j.si.20140202.11

    Article  Google Scholar 

  • Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India. Environmental Geochemistry and Health, 34(1), 27–42. https://doi.org/10.1007/s10653-011-9388-0

    CAS  Article  Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology and Geophysics, 5(1), 237. https://doi.org/10.4172/2381-8719.1000237

    Article  Google Scholar 

  • Barua, P., Mitra, A., Banerjee, K., & Chowdhury, M. S. N. (2011). Seasonal variation of heavy metals accumulation in water and oyster (Saccostrea cucullata) inhabiting central and western sector of Indian sundarbans. Environmental Research Journal, 5(3), 121–130. https://doi.org/10.3923/erj.2011.121.130

    Article  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment, 8(1), 63–70. https://doi.org/10.1007/s10333-009-0180-z

    Article  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., Banerjee, S., & Santra, S. C. (2013). In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India. Journal of Hazardous Materials, 262, 1091–1097. https://doi.org/10.1016/j.jhazmat.2012.09.004

    CAS  Article  Google Scholar 

  • Birch, G. F., & Olmos, M. A. (2008). Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES Journal of Marine Science, 65(8), 1407–1413. https://doi.org/10.1093/icesjms/fsn139

    CAS  Article  Google Scholar 

  • Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & A. FurnessR (Eds.), Coastal GIS (14th ed.). Wollongong University Papers in Center for Maritime Policy.

    Google Scholar 

  • Blott, S. J., & Pye, K. (2001). GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237–1248. https://doi.org/10.1002/esp.261

    Article  Google Scholar 

  • Boehler, S., Strecker, R., Heinrich, P., Prochazka, E., Northcott, G. L., Ataria, J. M., Leusch, F. D. L., Braunbeck, T., & Tremblay, L. A. (2017). Assessment of urban stream sediment pollutants entering estuaries using chemical analysis and multiple bioassays to characterise biological activities. Science of the Total Environment, 593, 498–507. https://doi.org/10.1016/j.scitotenv.2017.03.209

    CAS  Article  Google Scholar 

  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2014). Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Marine Pollution Bulletin, 81(1), 248–255. https://doi.org/10.1016/j.marpolbul.2014.01.031

    CAS  Article  Google Scholar 

  • Burton, G. A., Jr., & Scott, K. J. (1992). Sediment toxicity evaluations. Environmental Science & Technology, 26(11), 2068–2075. https://doi.org/10.1021/es00035a002

    CAS  Article  Google Scholar 

  • Chakraborty, P., Ramteke, D., Chakraborty, S., & Nagender Nath, B. (2014). Changes in metal contamination levels in estuarine sediments around India—An assessment. Marine Pollution Bulletin, 78(1–2), 15–25. https://doi.org/10.1016/j.marpolbul.2013.09.044

    CAS  Article  Google Scholar 

  • Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., & Saha, S. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322. https://doi.org/10.1007/s10661-008-0232-7

    CAS  Article  Google Scholar 

  • Chatterjee, M., Shankar, D., Sen, G. K., Sanyal, P., Sundar, D., Michael, G. S., Chatterjee, A., Amol, P., Mukherjee, D., Suprit, K., Mukherjee, A., Vijith, V., Chatterjee, S., Basu, A., Das, M., Chakraborti, S., Kalla, A., Misra, S. K., Mukhopadhyay, S., … Sarkar, K. (2013). Tidal variations in the Sundarbans estuarine system, India. Journal of Earth System Science, 122(4), 899–933. https://doi.org/10.1007/s12040-013-0314-y

    Article  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., & Bhattacharya, B. D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33(3), 346–356. https://doi.org/10.1016/j.envint.2006.11.013

    CAS  Article  Google Scholar 

  • Chaudhuri, P., Nath, B., & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: The role of rhizosphere processes. Marine Pollution Bulletin, 79(1–2), 284–292. https://doi.org/10.1016/j.marpolbul.2013.11.024

    CAS  Article  Google Scholar 

  • Clarke, D. W., Boyle, J. F., Lario, J., & Plater, A. J. (2014). Meso-scale barrier estuary disturbance, response and recovery behaviour: Evidence of system equilibrium and resilience from high-resolution particle size analysis. The Holocene, 24(3), 357–369. https://doi.org/10.1177/0959683613518597

    Article  Google Scholar 

  • Curray, J. R. (1964). Transgressions and regressions. In R. L. Miller (Ed.), Papers in marine geology (pp. 175–203). Macmillan.

    Google Scholar 

  • De Mahiques, M. M., Figueira, R. C. L., Salaroli, A. B., Alves, D. P. V., & Gonçalves, C. (2013). 150 years of anthropogenic metal input in a Biosphere Reserve: The case study of the Cananéia-Iguape coastal system, Southeastern Brazil. Environmental Earth Sciences, 68(4), 1073–1087. https://doi.org/10.1007/s12665-012-1809-6

    CAS  Article  Google Scholar 

  • Dung, T. T. T., Linh, T. M., Chau, T. B., Hoang, T. M., Swennen, R., & Cappuyns, V. (2019). Contamination status and potential release of trace metals in a mangrove forest sediment in Ho Chi Minh City, Vietnam. Environmental Science and Pollution Research, 26(10), 9536–9551. https://doi.org/10.1007/s11356-019-04355-3

    CAS  Article  Google Scholar 

  • Essien, J. P., Antai, S. P., & Olajire, A. A. (2009). Distribution, seasonal variations and ecotoxicological significance of heavy metals in sediments of cross river estuary mangrove swamp. Water, Air, and Soil Pollution, 197(1), 91–105. https://doi.org/10.1007/s11270-008-9793-x

    CAS  Article  Google Scholar 

  • Feng, H., Han, X., Zhang, W., & Yu, L. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49(11–12), 910–915. https://doi.org/10.1016/j.marpolbul.2004.06.014

    CAS  Article  Google Scholar 

  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Friedman, G. M. (1961). Distinction between dune, beach, and river sands from their textural characteristics. Journal of Sedimentary Research, 31(4), 514–529. https://doi.org/10.1306/74D70BCD-2B21-11D7-8648000102C1865D

    CAS  Article  Google Scholar 

  • Friske, P. W. B., Rencz, A. N., Ford, K. L., Kettles, I. M., Garrett, R. G., Grunsky, E. C., McNeil, R. J., & Klassen, R. A. (2013). Overview of the Canadian component of the North American Soil Geochemical Landscapes Project with recommendations for acquiring soil geochemical data for environmental and human health risk assessments. Geochemistry: Exploration, Environment, Analysis, 13(4), 267–283. https://doi.org/10.1144/geochem2012-140

    CAS  Article  Google Scholar 

  • Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves and Salt Marshes, 1(1), 3–10. https://doi.org/10.1023/A:1025973426404

    Article  Google Scholar 

  • Guhathakurta, H., & Kaviraj, A. (2000). Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and mullet (Liza parsia) in some brackish water ponds of Sunderban, India. Marine Pollution Bulletin, 40(11), 914–920. https://doi.org/10.1016/S0025-326X(00)00028-X

    CAS  Article  Google Scholar 

  • Huang, P., Li, T. G., Li, A. C., Yu, X. K., & Hu, N. J. (2014). Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Continental Shelf Research, 73, 1–13. https://doi.org/10.1016/j.csr.2013.11.014

    Article  Google Scholar 

  • Huerta-Diaz, M. A., Muñoz-Barbosa, A., Otero, X. L., Valdivieso-Ojeda, J., & Amaro-Franco, E. C. (2014). High variability in geochemical partitioning of iron, manganese and harmful trace metals in sediments of the mining port of Santa Rosalia, Baja California Sur, Mexico. Journal of Geochemical Exploration, 145, 51–63. https://doi.org/10.1016/j.gexplo.2014.05.014

    CAS  Article  Google Scholar 

  • Islam, M. L., Alam, M. J., Rheman, S., Ahmed, S. U., & Mazid, M. A. (2004). Water quality, nutrient dynamics and sediment profile in shrimp farms of the Sundarbans mangrove forest, Bangladesh. Indian Journal of Marine Sciences, 33(2), 170–176.

    CAS  Google Scholar 

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015a). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016

    CAS  Article  Google Scholar 

  • Islam, S., Ahmed, K. M., Habibullah-Al-Mamun, M., & Masunaga, S. (2015b). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512, 94–102. https://doi.org/10.1016/j.scitotenv.2014.12.100

    CAS  Article  Google Scholar 

  • Jonathan, M. P., Sarkar, S. K., Roy, P. D., Alam, M. A., Chatterjee, M., Bhattacharya, B. D., Bhattachairya, A., & Satpathy, K. K. (2010). Acid leachable trace metals in sediment cores from Sunderban Mangrove Wetland, India: An approach towards regular monitoring. Ecotoxicology, 19(2), 405–418. https://doi.org/10.1007/s10646-009-0426-y

    CAS  Article  Google Scholar 

  • Kader, A., & Narayan Sinha, S. (2018). Heavy metal contamination in the sediment and plants of the Sundarbans, India. Chemistry and Ecology, 34(6), 506–518. https://doi.org/10.1080/02757540.2018.1462344

    CAS  Article  Google Scholar 

  • Kalantzi, I., Papageorgiou, N., Sevastou, K., Black, K. D., Pergantis, S. A., & Karakassis, I. (2014). Metals in benthic macrofauna and biogeochemical factors affecting their trophic transfer to wild fish around fish farm cages. Science of the Total Environment, 470, 742–753. https://doi.org/10.1016/j.scitotenv.2013.10.020

    CAS  Article  Google Scholar 

  • Kibria, G., Hossain, M. M., Mallick, D., Lau, T. C., & Wu, R. (2016). Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Marine Pollution Bulletin, 105(1), 393–402. https://doi.org/10.1016/j.marpolbul.2016.02.021

    CAS  Article  Google Scholar 

  • Kumar, A., & Ramanathan, A. L. (2015). Speciation of selected trace metals (Fe, Mn, Cu and Zn) with depth in the sediments of Sundarban mangroves: India and Bangladesh. Journal of Soils and Sediments, 15(12), 2476–2486. https://doi.org/10.1007/s11368-015-1257-5

    CAS  Article  Google Scholar 

  • Kumar, A., Ramanathan, A. L., Prasad, M. B. K., Datta, D., Kumar, M., & Sappal, S. M. (2016). Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: A baseline study before Sundarban oil spill of December, 2014. Environmental Science and Pollution Research, 23(9), 8985–8999. https://doi.org/10.1007/s11356-016-6086-6

    CAS  Article  Google Scholar 

  • L’her Roux, L. L., Le Roux, S. L., & Appriou, P. (1998). Behaviour and speciation of metallic species Cu, Cd, Mn and Fe during estuarine mixing. Marine Pollution Bulletin, 36(1), 56–64. https://doi.org/10.1016/S0025-326X(98)90033-9

    Article  Google Scholar 

  • Lin, Y. C., Chang-Chien, G. P., Chiang, P. C., Chen, W. H., & Lin, Y. C. (2013). Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Marine Pollution Bulletin, 76(1–2), 266–275. https://doi.org/10.1016/j.marpolbul.2013.08.027

    CAS  Article  Google Scholar 

  • Liu, J., Wu, H., Feng, J., Li, Z., & Lin, G. (2014). Heavy metal contamination and ecological risk assessments in the sediments and zoobenthos of selected mangrove ecosystems, South China. CATENA, 119, 136–142. https://doi.org/10.1016/j.catena.2014.02.009

    CAS  Article  Google Scholar 

  • Metge, D. W., Harvey, R. W., Aiken, G. R., Anders, R., Lincoln, G., & Jasperse, J. (2010). Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA. Water Research, 44(4), 1126–1137. https://doi.org/10.1016/j.watres.2009.11.033

    CAS  Article  Google Scholar 

  • Mitra, A., Barua, P., Zaman, S., & Banerjee, K. (2012). Analysis of trace metals in commercially important crustaceans collected from UNESCO protected world heritage site of Indian Sundarbans. Turkish Journal of Fisheries and Aquatic Sciences, 12(1), 53–66.

    Article  Google Scholar 

  • Mitra, A., Gangopadhyay, A., Dube, A., Schmidt, A. C. K., & Banerjee, K. (2009). Observed changes in water mass properties in the Indian Sundarbans (northwestern Bay of Bengal) during 1980–2007. Current Science, 97(10), 1445–1452. https://www.currentscience.ac.in/Volumes/97/10/1445.pdf

  • Mitra, S., Sarkar, S. K., Raja, P., Biswas, J. K., & Murugan, K. (2018). Dissolved trace elements in Hooghly (Ganges) River Estuary, India: Risk assessment and implications for management. Marine Pollution Bulletin, 133, 402–414. https://doi.org/10.1016/j.marpolbul.2018.05.057

    CAS  Article  Google Scholar 

  • Mukherjee, D., Mukherjee, A., & Kumar, B. (2009). Chemical fractionation of metals in freshly deposited marine estuarine sediments of sundarban ecosystem, India. Environmental Geology, 58(8), 1757–1767. https://doi.org/10.1007/s00254-008-1675-4

    CAS  Article  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschaun., 79(24), 778–783.

    Google Scholar 

  • Nath, D., Mishra, R. N., Mandal, S., Saha, K., & Biswas, D. K. (2003). Heavy metal contents in Sundarban estuaries. Journal of the Inland Fisheries Society of India, 35(1), 78–84.

    Google Scholar 

  • Ohimain, E. I., Olu, D. S., & Abah, S. O. (2009). Bioleaching of heavy metals from abandoned mangrove dredged spoils in the Niger delta; A Laboratory Study. World Applied Sciences Journal, 7(9), 1105–1113.

    CAS  Google Scholar 

  • Okoro, H. K., Fatoki, O. S., Adekola, F. A., Ximba, B. J., Snyman, R. G., & Mdokwana, B. W. (2013). The effect of particle sizes on metal accumulation in the marine sediments of cape town harbour. Journal of North Carolina Academy of Science, 129(3), 115–125. https://doi.org/10.7572/2167-5880-129.3.115

    Article  Google Scholar 

  • Oldham, V. E., Siebecker, M. G., Jones, M. R., Mucci, A., Tebo, B. M., & Luther, G. W. (2019). The speciation and mobility of Mn and Fe in estuarine sediments. Aquatic Geochemistry, 25(1–2), 3–26. https://doi.org/10.1007/s10498-019-09351-0

    CAS  Article  Google Scholar 

  • Rabee, A. M., Al-Fatlawy, Y. F., Abd, A. A. H. N., & Nameer, M. (2011). Using Pollution Load Index (PLI) and Geoaccumulation Index (I-Geo) for the assessment of heavy metals pollution in tigris river sediment in Baghdad Region. Journal of Al-Nahrain University, 14(4), 108–114.

    Article  Google Scholar 

  • Rajkumar, K., Ramanathan, A. L., & Behera, P. N. (2012). Characterization of clay minerals in the Sundarban mangroves river sediments by SEM/EDS. Journal of the Geological Society of India, 80(3), 429–434. https://doi.org/10.1007/s12594-012-0161-5

    CAS  Article  Google Scholar 

  • Rajkumar, K., Ramanathan, A. L., Behera, P. N., & Chidambaram, S. (2014). Preliminary studies on the characterization of clay minerals in the Sundarban mangrove core sediments, West Bengal, India. Arabian Journal of Geosciences, 7(2), 537–544. https://doi.org/10.1007/s12517-012-0787-z

    CAS  Article  Google Scholar 

  • Raju, K. V., Somashekar, R. K., & Prakash, K. L. (2012). Heavy metal status of sediment in river Cauvery, Karnataka. Environmental Monitoring and Assessment, 184(1), 361–373. https://doi.org/10.1007/s10661-011-1973-2

    CAS  Article  Google Scholar 

  • Ram, S. S., Aich, A., Sengupta, P., Chakraborty, A., & Sudarshan, M. (2018). Assessment of trace metal contamination of wetland sediments from eastern and western coastal region of India dominated with mangrove forest. Chemosphere, 211, 1113–1122. https://doi.org/10.1016/j.chemosphere.2018.07.201

    CAS  Article  Google Scholar 

  • Ramanathan, A. L., Rajkumar, K., Majumdar, J., Singh, G., Behera, P. N., Santra, S. C., & Chidambaram, S. (2009). Textural characteristics of the surface sediments of a tropical mangrove Sundarban ecosystem India. Indian Journal of Geomarine Sciences, 38(4), 397–403.

    Google Scholar 

  • Ranjan, P., Ramanathan, A. L., Kumar, A., Singhal, R. K., Datta, D., & Venkatesh, M. (2018). Trace metal distribution, assessment and enrichment in the surface sediments of Sundarban mangrove ecosystem in India and Bangladesh. Marine Pollution Bulletin, 127, 541–547. https://doi.org/10.1016/j.marpolbul.2017.11.047

    CAS  Article  Google Scholar 

  • Rashedi, S. A., & Siad, A. (2016). Grain size analysis and depositional environment for beach sediments along Abu Dhabi coast, United Arab Emirates. International Journal of Scientific & Technology Research5(7), 106–115. https://www.ijstr.org/final-print/july2016/Grain-Size-Analysis-And-Depositional-Environment-For-Beach-Sediments-Along-Abu-Dhabi-Coast-United-Arab-Emirates.pdf

  • Reineck, H. E., & Singh, I. B. (2012). Depositional sedimentary environments: With reference to terrigenous clastics. Springer.

    Google Scholar 

  • Rubalingeswari, N., Thulasimala, D., Giridharan, L., Gopal, V., Magesh, N. S., & Jayaprakash, M. (2021). Bioaccumulation of heavy metals in water, sediment, and tissues of major fisheries from Adyar estuary, southeast coast of India: An ecotoxicological impact of a metropolitan city. Marine Pollution Bulletin, 163, 111964. https://doi.org/10.1016/j.marpolbul.2020.111964

    CAS  Article  Google Scholar 

  • Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment International, 32(2), 203–207. https://doi.org/10.1016/j.envint.2005.08.012

    CAS  Article  Google Scholar 

  • Saha, S. B., Mitra, A., Bhattacharyya, S. B., & Choudhury, A. (2001). Status of sediment with special reference to heavy metal pollution of a brackishwater tidal ecosystem in northern Sundarbans of West Bengal. Tropical Ecology, 42(1), 127–132.

    CAS  Google Scholar 

  • Sahu, B. K. (1964). Depositional mechanisms from the size analysis of clastic sediments. Journal of Sedimentary Research, 34(1), 73–83. https://doi.org/10.1306/74D70FCE-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Sahu, K. C., & Bhosale, U. (1991). Heavy metal pollution around the island city of Bombay, India. Part I: quantification of heavy metal pollution of aquatic sediments and recognition of environmental discriminants. Chemical Geology, 90(3), 263–283. https://doi.org/10.1016/0009-2541(91)90104-Y

    CAS  Article  Google Scholar 

  • Sarkar, S. K., Mondal, P., Biswas, J. K., Kwon, E. E., Ok, Y. S., & Rinklebe, J. (2017). Trace elements in surface sediments of the Hooghly (Ganges) estuary: Distribution and contamination risk assessment. Environmental Geochemistry and Health, 39(6), 1245–1258. https://doi.org/10.1007/s10653-017-9952-3

    CAS  Article  Google Scholar 

  • Schaider, L. A., Senn, D. B., Estes, E. R., Brabander, D. J., & Shine, J. P. (2014). Sources and fates of heavy metals in a mining-impacted stream: Temporal variability and the role of iron oxides. Science of the Total Environment, 490, 456–466. https://doi.org/10.1016/j.scitotenv.2014.04.126

    CAS  Article  Google Scholar 

  • Shah, B. A., Shah, A. V., Mistry, C. B., & Navik, A. J. (2013). Assessment of heavy metals in sediments near Hazira industrial zone at Tapti River estuary, Surat, India. Environmental Earth Sciences, 69(7), 2365–3276. https://doi.org/10.1007/s12665-012-2066-4

    CAS  Article  Google Scholar 

  • Shepard, F. P. (1954). Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24(3), 151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Siddique, M. A. M., Rahman, M., Rahman, S. M. A., Hassan, M. R., Fardous, Z., Chowdhury, M. A. Z., & Hossain, M. B. (2021). Assessment of heavy metal contamination in the surficial sediments from the lower Meghna River estuary, Noakhali coast, Bangladesh. International Journal of Sediment Research, 36(3), 384–391. https://doi.org/10.1016/j.ijsrc.2020.10.010

    Article  Google Scholar 

  • Silva Filho, E. V., Jonathan, M. P., Chatterjee, M., Sarkar, S. K., Sella, S. M., Bhattacharya, A., & Satpathy, K. K. (2011). Ecological consideration of trace element contamination in sediment cores from Sundarban wetland, India. Environmental Earth Sciences, 63(6), 1213–1225. https://doi.org/10.1007/s12665-010-0795-9

    CAS  Article  Google Scholar 

  • Singh, G., Ramanathan, A. L., Santra, S. C., & Ranjan, R. K. (2016). Tidal control on the nutrient variability in Sundarban mangrove ecosystem. Journal of Applied Geochemistry, 18(4), 495–503.

    CAS  Google Scholar 

  • Smith, B. D., Braulik, G., Strindberg, S., Mansur, R., Diyan, M. A. A., & Ahmed, B. (2009). Habitat selection of freshwater-dependent cetaceans and the potential effects of declining freshwater flows and sea-level rise in waterways of the Sundarbans mangrove forest, Bangladesh. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(2), 209–225. https://doi.org/10.1002/aqc.987

    Article  Google Scholar 

  • Spalding, M. D., Blasco, F., & Field, C. D. (Eds.). (1997). World Atlas of Mangroves (pp. 178). International Society for Mangrove Ecosystems (ISME), Okinawa, Japan.

  • Stanley, D. J., & Hait, A. K. (2000). Holocene depositional patterns, neotectonics and Sundarban mangroves in the western Ganges-Brahmaputra delta. Journal of Coastal Research, 16(1), 26–39.

    Google Scholar 

  • Strady, E., Dinh, Q. T., Némery, J., Nguyen, T. N., Guédron, S., Nguyen, N. S., Denis, H., & Nguyen, P. D. (2017). Spatial variation and risk assessment of trace metals in water and sediment of the Mekong Delta. Chemosphere, 179, 367–378. https://doi.org/10.1016/j.chemosphere.2017.03.105

    CAS  Article  Google Scholar 

  • Thinh, N. V., Osanai, Y., Adachi, T., Thai, P. K., Nakano, N., Ozaki, A., Kuwahara, Y., Kato, R., Makio, M., & Kurosawa, K. (2018). Chemical speciation and bioavailability concentration of arsenic and heavy metals in sediment and soil cores in estuarine ecosystem, Vietnam. Microchemical Journal, 139, 268–277. https://doi.org/10.1016/j.microc.2018.03.005

    CAS  Article  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575.

    Article  Google Scholar 

  • Turner, A. (2000). Trace metal contamination in sediments from UK estuaries: An empirical evaluation of the role of hydrous iron and manganese oxides. Estuarine, Coastal and Shelf Science, 50(3), 355–371. https://doi.org/10.1006/ecss.1999.0573

    CAS  Article  Google Scholar 

  • Wang, Q., Hong, H., Yang, D., Li, J., Chen, S., Pan, C., Lu, H., Liu, J., & Yan, C. (2020). Health risk assessment of heavy metal and its mitigation by glomalin-related soil protein in sediments along the South China coast. Environmental Pollution, 263, 114565. https://doi.org/10.1016/j.envpol.2020.114565

    CAS  Article  Google Scholar 

  • Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243–266. https://doi.org/10.1146/annurev-marine-122414-034025

    CAS  Article  Google Scholar 

  • Xie, M., Wang, N., Gaillard, J. F., & Packman, A. I. (2016). Hydrodynamic forcing mobilizes Cu in low-permeability estuarine sediments. Environmental Science & Technology, 50(9), 4615–4623. https://doi.org/10.1021/acs.est.5b04576

    CAS  Article  Google Scholar 

  • Yang, D., Wang, M., Lu, H., Ding, Z., Liu, J., & Yan, C. (2019). Magnetic properties and correlation with heavy metals in mangrove sediments, the case study on the coast of Fujian, China. Marine Pollution Bulletin, 146, 865–873. https://doi.org/10.1016/j.marpolbul.2019.07.035

    CAS  Article  Google Scholar 

  • Zaman, S., Bhattacharyya, S. B., Pramanick, P., Raha, A. K., Chakraborty, S., & Mitra, A. (2014). Rising water salinity: A threat to mangroves of Indian Sundarbans. In A. M. Abedin, U. Habiba, & R. Shaw (Eds.), Water insecurity: a social dilemma, (community, environment and disaster risk management) (13th ed., pp. 167–183). Emerald Group Publishing Limited.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University Grant Commission (India) for providing funding for experiments and fellowship and the Department of Environmental Science, University of Kalyani, for providing necessary laboratory facilities. Authors are very much thankful to anonymous reviewers for their valuable comments and suggestions for improving this manuscript from its previous versions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayjit Majumdar or Jayanta Kumar Biswas.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Majumdar, J., Biswas, J.K., Santra, S.C. et al. Sedimentation of metals in Sundarban mangrove ecosystem: Dominant drivers and environmental risks. Environ Geochem Health (2022). https://doi.org/10.1007/s10653-022-01277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-022-01277-x

Keywords

  • Estuary
  • Metal contamination
  • Sediment deposition
  • Geo-accumulation
  • Pollution load
  • Environmental health