Skip to main content
Log in

Sources, pollution, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Porto-Novo Lagoon, Benin Republic

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Porto-Novo Lagoon is influenced by agricultural discharges and human activities. In order to evaluate the impact of wastes and human activities on Porto-Novo Lagoon, the sources and ecological risks of sixteen polycyclic aromatic hydrocarbons (PAHs) were assessed. The physicochemical and biological parameters of the water were also determined. The result showed that between the sampling sites, the mean concentration of dissolved oxygen ranged from 4.8 ± 0.5 to 5.1 ± 0.2 mg/L; biochemical oxygen demand varied from 12.6 ± 2.0 to 77.9 ± 81.9 mg/L; biological oxygen demand ranged from 2.8 ± 2.6 to 5.6 ± 0.9 mg/L; total phosphorus varied between 4.7 ± 2.7 and 15.3 ± 9.5 mg/L; total dissolved solids ranged from 183.0 ± 115.8 to 337.5 ± 413.3 mg/L, and Escherichia coli varied from 495.0 ± 542.9 to 1920.0 ± 2676.5 UFC/100 mL. Water parameter values obtained were not within World Health Organization (WHO)-recommended limits except pH and TDS. Total PAHs (∑PAHs) concentration varied from 38.8 to 123.9 mg/L. The mean ∑PAH concentration was 83.2 ± 20.3 mg/L. Benzo[b]fluoranthene, benzo[g,h,i]perylene, and benzo[k]fluoranthene were the most dominant PAHs and contributed to 55.9%, 15.3%, and 4.5% of the ∑PAHs concentration, respectively. Douane-Tokpa and Djassin recorded the lowest and highest concentrations. PAHs of four to six rings were the most abundant across the sampling sites. Naphthalene showed the lowest risk in the lagoon. Acenaphthene showed low risk at Djassin, while Indeno(1,2,3 cd)pyrene showed low risk at Benin Industry Body Fat. Except for those that were not detected, all the PAHs at individual or complex mixture levels showed high risk at all the sites. The highest total concentration was recorded in Djassin followed by Beaurivage. The high level of PAHs pollution was attributed to both human and goods traffic, runoff, and the complex hotels close to the lagoon. Molecular diagnostic ratios and principal component analysis suggest that the target hydrocarbons were from both petrogenic and pyrogenic sources with predomination of vehicular emission and coal/woods combustion. ∑LWM/HWM confirmed also the predominance of pyrolytic sources of PAHs in Porto-Novo Lagoon. The predominance of the vehicular emission may be due to the position of the complex Porto-Novo Lagoon-Nokoué Lake which is between the two big cities of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Akogbeto, H. K., Zanklan, A. S., Liady, N. D., & Fiogbe, E. D. (2017a). Hydromorphological and physicochemical characterization of water properties in the lagoon Porto-Novo ( Benin Republic ). Journal of Biodiversity and Environmental Sciences (JBES), 11(6), 59–84.

    Google Scholar 

  • Akogbeto, H. K., Zanklan, A. S., Sossoukpe, E., & Fiogbe, E. D. (2017). Fractionation of sediment phosphorus in Lagoon Porto-Novo ( Benin Republic ) revisited: Changes in phosphorus fractions and release as affected by seasons and sampling sites. International Journal of Current Microbiology and Applied Sciences, 6(11), 2914–2937.

    Article  Google Scholar 

  • Babalola, O. A., & Fiogbe, D. E. (2016). Seasonal variation assessment and correlation coefficent of metal pollutants in sediments and water from Porto Novo Lagoon Ecosystem Benin Republic. Science and Education Publishing, 4(13), 976–982. https://doi.org/10.12691/education-4-13-10

    Article  Google Scholar 

  • Babalola, O. A., & Fiogbe, D. E. (2017). Pollution and effects of hydrological patterns on water and sediments quality characteristics from porto-novo lagoon bionetwork. International Research Journal of Environmental Sciences, 6(8), 30–38.

    Google Scholar 

  • Baird, D. R., Eaton, D. A., & Rice, W. E. (Eds.). (2017). Standard methods for examination of water and wastewater, 23rd edition (23 RD). American Public Health Association.

    Google Scholar 

  • Behera, B. K., Das, A., Sarkar, D. J., Weerathunge, P., Parida, P. K., Das, B. K., Thavamani, P., Ramanathan, R., & Bansal, V. (2018). Polycyclic aromatic hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental Pollution, 241(2018), 212–233. https://doi.org/10.1016/j.envpol.2018.05.016

    Article  CAS  Google Scholar 

  • Benson, N. U., Essien, J. P., Asuquo, F. E., & Eritobor, A. L. (2014). Occurrence and distribution of polycyclic aromatic hydrocarbons in surface microlayer and subsurface seawater of Lagos Lagoon, Nigeria. Environmental Monitoring and Assessment, 186, 5519–5529. https://doi.org/10.1007/s10661-014-3800-z

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Rakib, M. A., Dampare, S. B., Ganyaglo, S., & Suzuki, S. (2011). Surface water quality assessment in the central part of Bangladesh using multivariate analysis. KSCE Journal of Civil Engineering, 15(6), 995–1003. https://doi.org/10.1007/s12205-011-1079-y

    Article  Google Scholar 

  • Boehm, D. P., Page, S. D., Burns, A. W., Bence, E. A., Mankiewicz, J. P., & Brown, S. J. (2001). Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska. Environmental Science and Technology, 35, 471–479.

    Article  CAS  Google Scholar 

  • Bouloubassi, I., Roussiez, V., Azzoug, M., & Lorre, A. (2012). Sources, dispersal pathways and mass budget of sedimentary polycyclic aromatic hydrocarbons (PAH) in the NW Mediterranean margin, Gulf of Lions. Marine Chemistry, 142–144, 18–28. https://doi.org/10.1016/j.marchem.2012.07.003

    Article  CAS  Google Scholar 

  • British Columbia. (1993). Ambient Water Quality Criteria For Polycyclic Aromatic Hydrocarbons (PAHs) Ministry of Environment , Lands and Parks Province of British Columbia. 135.

  • Cao, Y., Xin, M., Wang, B., Lin, C., Liu, X., He, M., Lei, K., Xu, L., Zhang, X., & Lu, S. (2020). Spatiotemporal distribution, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the urbanized semi-enclosed Jiaozhou Bay, China. Science of the Total Environment, 717, 137224. https://doi.org/10.1016/j.scitotenv.2020.137224

    Article  CAS  Google Scholar 

  • Cao, Z., Liu, J., Luan, Y., Li, Y., Ma, M., Xu, J., & Han, S. (2010). Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology, 19(5), 827–837. https://doi.org/10.1007/s10646-010-0464-5

    Article  CAS  Google Scholar 

  • Degila, H. W., Azon, N. B. N., Adounkpe, J. G., Chikou, A., & Aïna, M. P. (2020). Mercury content of sarotherodon melanotheron and chrysischthys nigrodigitatus of Lake Nokoue and Porto Novo lagoon in Benin. Inter National Journal of Biological and Chemical Sciences, 14(6), 2322–2332. https://doi.org/10.4314/ijbcs.v14i6.31

    Article  CAS  Google Scholar 

  • Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. International Journal of Environmental Research and Public Health, 13(4), 387. https://doi.org/10.3390/ijerph13040387

    Article  CAS  Google Scholar 

  • EPA, ( The Environmental Protection Agency). (2001). PARAMETERS OF WATER QUALITY Interpretation and Standards Publishe. EnvironmentalProtection Agency, Ireland.

  • Fadinan, A. O., Dlamini, S. C., & Mavuso, A. (2008). A comparative study of the phosphate level in some surface and ground water bodies of Swaziland. Chemical Society of Ethiopi, 22(2), 197–206.

    Google Scholar 

  • Gdara, I., Zrafi, I., Balducci, C., Cecinato, A., & Ghrabi, A. (2018). Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi. Environmental Geochemistry and Health, 40(4), 1609–1627. https://doi.org/10.1007/s10653-018-0075-2

    Article  CAS  Google Scholar 

  • González-Gaya, B., Martínez-Varela, A., Vila-Costa, M., Casal, P., Cerro-Gálvez, E., Berrojalbiz, N., Lundin, D., Vidal, M., Mompeán, C., Bode, A., Jiménez, B., & Dachs, J. (2019). Biodegradation as an important sink of aromatic hydrocarbons in the oceans. Nature Geoscience, 12(2), 119–125. https://doi.org/10.1038/s41561-018-0285-3

    Article  CAS  Google Scholar 

  • Guo, W., He, M., Yang, Z., Lin, C., & Quan, X. (2011). Aliphatic and polycyclic aromatic hydrocarbons in the Xihe River, an urban river in China ’ s Shenyang City : Distribution and risk assessment. Journal of Hazardous Materials, 186(2–3), 1193–1199. https://doi.org/10.1016/j.jhazmat.2010.11.122

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. I. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham U.K. Environmental Science and Technology, 30(3), 825–832. https://doi.org/10.1021/es950252d

    Article  CAS  Google Scholar 

  • Ikenaka, Y., Sakamoto, M., Nagata, T., & Takahashi, H. (2013). Effects of polycyclic aromatic hydrocarbons (PAHs) on an aquatic ecosystem : Acute toxicity and community-level toxic impact tests of benzo [a ] pyrene using lake zooplankton community. Journal of Toxicological Sciences, 38(1), 131–136.

    Article  CAS  Google Scholar 

  • Kafilzadeh, F. (2015). Distribution and sources of polycyclic aromatic hydrocarbons in water and sediments of the Soltan Abad River, Iran. Egyptian Journal of Aquatic Research, 41(3), 227–231. https://doi.org/10.1016/j.ejar.2015.06.004

    Article  Google Scholar 

  • Kalf, D. F., Crommentuijn, T., & Van de Plassche, E. J. (1997). Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHS). Ecotoxicology and Environmental Safety, 36(1), 89–97. https://doi.org/10.1006/eesa.1996.1495

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35(11), 2288–2294. https://doi.org/10.1021/es001540z

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533–542. https://doi.org/10.1016/1352-2310(94)00275-P

    Article  CAS  Google Scholar 

  • Khan, I., Khan, A., Khan, M. S., Zafar, S., Hameed, A., Badshah, S., Rehman, S. U., Ullah, H., & Yasmeen, G. (2018). Impact of city effluents on water quality of Indus River: Assessment of temporal and spatial variations in the southern region of Khyber Pakhtunkhwa, Pakistan. Environmental Monitoring and Assessment, 190(5), 1–19. https://doi.org/10.1007/s10661-018-6621-7

    Article  CAS  Google Scholar 

  • Lalèyè, P., Niyonkuru, C., Moreau, J., & Teugels, G. G. (2003). African Journal of Aquatic Science Spatial and seasonal distribution of the ichthyofauna of Lake Nokoué , Bénin , west Africa Spatial and seasonal distribution of the ichthyofauna of Lake Nokoué ,. 28(2), 151–161. https://doi.org/10.2989/16085910309503779

  • Lan, J., Sun, Y., & Xiang, X. (2020). Ecological risk assessment of PAHs in a Karst underground river system. Polish Journal of Environmental Studies, 29(1), 677–687.

    Article  CAS  Google Scholar 

  • Lee, J. H., Gigliotti, C. L., Offenberg, J. H., Eisenreich, S. J., & Turpin, B. J. (2004). Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. Atmospheric Environment, 38(35), 5971–5981. https://doi.org/10.1016/j.atmosenv.2004.07.004

    Article  CAS  Google Scholar 

  • Li, A., Schoonover, T. M., Zou, Q., Norlock, F., Conroy, L. M., Scheff, P. A., & Wadden, R. A. (2005). Polycyclic aromatic hydrocarbons in residential air of ten Chicago area homes : Concentrations and influencing factors. Atmospheric Environment, 39(19), 3491–3501. https://doi.org/10.1016/j.atmosenv.2005.02.029

    Article  CAS  Google Scholar 

  • Li, J., Dong, H., Zhang, D., Han, B., Zhu, C., Liu, S., Liu, X., Ma, Q., & Li, X. (2015a). Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Marine Pollution Bulletin, 96(1–2), 485–490. https://doi.org/10.1016/j.marpolbul.2015.05.002

    Article  CAS  Google Scholar 

  • Li, P., Cao, J., Diao, X., Wang, B., Zhou, H., Han, Q., Zheng, P., & Li, Y. (2015b). Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China. Marine Pollution Bulletin, 93(1–2), 53–60. https://doi.org/10.1016/j.marpolbul.2015.02.015

    Article  CAS  Google Scholar 

  • Lin, J., Xie, L., Pietrafesa, L. J., Shen, J., Mallin, M. A., & Durako, M. J. (2006). Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries. Estuarine Costal and Shelf Science, 70(3), 423–437. https://doi.org/10.1016/j.ecss.2006.06.032

    Article  CAS  Google Scholar 

  • Liu, A., Lang, Y., Xue, L., & Liu, J. (2009). Ecological risk analysis of polycyclic aromatic hydrocarbons ( PAHs ) in surface sediments from Laizhou Bay. Environmental Monitoring and Assessment, 159, 429–436. https://doi.org/10.1007/s10661-008-0640-8

    Article  CAS  Google Scholar 

  • Liu, W., Ma, L., Abuduwaili, J., & Li, Y. (2017). Distribution, source analysis, and ecological risk assessment of polycyclic aromatic hydrocarbons in the typical topsoil of the Issyk-Kul Lake Basin. Environmental Monitoring and Assessment, 189, 1–11. https://doi.org/10.1007/s10661-017-6113-1

    Article  CAS  Google Scholar 

  • Lu, J., Zhang, C., Wu, J., Lin, Y., Zhang, Y., Yu, X., & Zhang, Z. (2019). Pollution, sources, and ecological-health risks of polycyclic aromatic hydrocarbons in coastal waters along coastline of China. Human and Ecological Risk Assessment: An International Journal, 26(4), 968–9841. https://doi.org/10.1080/10807039.2018.1548899

    Article  CAS  Google Scholar 

  • Mama, D., Chouti, W., Alassane, A., Changotade, O., Alapini, F., & Boukari, M. (2011). Etude dynamique des apports en éléments majeurs et nutritifs des eaux de la lagune de Porto-Novo (Sud Bénin). International Journal of Biological and Chemical Sciences, 5(3), 1278–1293. https://doi.org/10.4314/ijbcs.v5i3.72279

    Article  Google Scholar 

  • Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971

    Article  CAS  Google Scholar 

  • Olayinka, O. O., Adewusi, A. A., Oloujimi, O. O., & Aladesida, A. A. (2018). Concentration of Polycyclic Aromatic Hydrocarbons and Estimated Human Health Risk of Water Samples Around Atlas Cove , Lagos , Nigeria. Journal of Health and Pollution, 8(20), 181210.

  • Montuori, P., Aurino, S., Garzonio, F., Sarnacchiaro, P., Nardone, A., & Triassi, M. (2016).  Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy. Science of the Total Environment, 566, 1254–1267. https://doi.org/10.1016/j.scitotenv.2016.05.183

    Article  CAS  Google Scholar 

  • Odonkor, S. T., & Mahami, T. (2020). Escherichia coli as a tool for disease risk assessment of drinking water sources. International Journal of Microbiology, 2020, 7. https://doi.org/10.1155/2020/2534130

    Article  Google Scholar 

  • Paulse, A. N., Jackson, V. A., & Khan, W. (2007). Comparison of enumeration techniques for the investigation of bacterial pollution in the Berg River, Western Cape, South Africa. Water SA, 33(2), 165–174.

    Google Scholar 

  • Popoola, L. T., Yusuff, A. S., & Aderibigbe, T. A. (2019). Assessment of natural groundwater physico-chemical properties in major industrial and residential locations of Lagos metropolis. Applied Water Science, 9(8), 1–10.

  • Priiss, A. (1998). Review of epidemiological studies on health effects from exposure to recreational water. International of Epidemiology, 1998(27), 1–9.

    Google Scholar 

  • Qamar, Z., Khan, S., Khan, A., Aamir, M., Nawab, J., & Waqas, M. (2017). Appraisement, source apportionment and health risk of polycyclic aromatic hydrocarbons (PAHs) in vehicle-wash wastewater, Pakistan. Science of the Total Environment, 605–606, 106–113. https://doi.org/10.1016/j.scitotenv.2017.06.152

    Article  CAS  Google Scholar 

  • Qin, N., He, W., Kong, X., Liu, W., He, Q., Yang, B., Ouyang, H., Wang, Q., & Xu, F. (2013). Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators. Ecological Indicators, 24, 599–608. https://doi.org/10.1016/j.ecolind.2012.08.019

    Article  CAS  Google Scholar 

  • Rossi, A., Wolde, B. T., Lee, L. H., & Wu, M. (2020). Science of the total environment prediction of recreational water safety using escherichia coli as an indicator : Case study of the Passaic and Pompton rivers, New Jersey. Science of the Total Environment, Elsevier, 714(2020), 136814. https://doi.org/10.1016/j.scitotenv.2020.136814

    Article  CAS  Google Scholar 

  • Sany, B. T., Salleh, A., Sulaiman, A. H., & Tehrani, G. M. (2012). Ecological Risk Assessment of Poly Aromatic Hydrocarbons in the North Port, Malaysia sediment. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 6(9).

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33(30), 5071–5079.

  • Soclo, H. H., Affokpon, A., Sagbo, A., Thomson, S., Budzinski, H., Garrigues, P., Matsuzawa, S., & Rababah, A. (2002). Urban runoff contribution to surface sediment accumulation for polycyclic aromatic hydrocarbons in the Cotonou lagoon, Benin. Polycyclic Aromatic Compounds, 22(2), 111–128. https://doi.org/10.1080/10406630211459

    Article  CAS  Google Scholar 

  • Soclo, H. H., Budzinski, H., Garrigues, P., & Matsuzawa, S. (2008). Biota accumulation of polycyclic aromatic hydrocarbons in Benin coastal waters. Polycyclic aromatic compounds, 28(2), 112–127. https://doi.org/10.1080/10406630801940530

  • Soclo, H. H., Garrigues, P. H., & Ewald, M. (2009). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments : Case studies in Cotonou (Benin) and Aquitaine (France) Areas. Marine Pollution Bulletin, 40(5), 387–396.

    Article  Google Scholar 

  • Sofowote, U. M., Mccarry, B. E., & Marvin, C. H. (2008). Source apportionment of PAH in Hamilton Harbour suspended sediments: Comparison of two factor analysis methods. Environmental Science and Technology, 42(16), 6007–6014. https://doi.org/10.1021/es800219z

    Article  CAS  Google Scholar 

  • Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices : An overview of possibilities. Reviews of Environmental Contamination and Toxicology, 234, 49–133. https://doi.org/10.1007/978-3-

    Article  CAS  Google Scholar 

  • Sukhdhane, K. S., Pandey, P. K., Vennila, A., Purushothaman, C. S., & Ajima, M. N. O. (2015). Sources, distribution and risk assessment of polycyclic aromatic hydrocarbons in the mangrove sediments of Thane Creek, Maharashtra, India. Environmental Monitoring and Assessment, 187, 274. https://doi.org/10.1007/s10661-015-4470-1

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162(2012), 110–119. https://doi.org/10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  • Ugochukwu, C. U., Onuorah, L. A., Okwu-Delunzu, U. V., Odinkonigbo, L. U., & Onuora, H. O. (2019). Effects of power station and abattoir on PAH input into sediments of Oji River: Ecological and human health exposure risks. Environmental Monitoring and Assessment, 191, 775. https://doi.org/10.1007/s10661-019-7917-y

    Article  CAS  Google Scholar 

  • USEPA. (1986). Quality criteria for water. https://www.epa.gov/sites/production/files/2018-10/documents/quality-criteria-water-1986.pdf.

  • USEPA. (1996a). Method 3630C, Silica Gel Clean up. United States Environmental Protection Agency. https://settek.com/documents/EPA-Methods/PDF/EPA-Method-3630C.pdf.

  • USEPA. (1996b). Separatory funnel liquid-liquid extraction. United States Environmental Programme Agency. https://www.epa.gov/sites/production/files/2015-12/documents/3510c.pdf.

  • USEPA. (2008). Polycyclic Aromatic Hydrocarbons. https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/pahs.pdf.

  • Valle, S., Panero, A. M., & Shor, L. (2007). Pollution Prevention and Management Strategies for Dioxins in the New York / New Jersey Harbor. New York Academy of Sciences.

  • Villanuewa, S. C. M. (2004). Biodiversité et relations trophiques de quelques milieux estuariens lqgunaires dans l’Afrique de l’ouest: qdqptqtions qux pressions environne,entqles. Doctorat de l’Institut National Polytechnique de Toulouse. INP/ENSAT.

  • Vodougnon, H., Lederoun, D., & Amoussou, G. (2018). Ecologic stress in fish population of Lake Nokoué and Porto-Novo Lagoon in Benin. International Journal of Fisheries and Aquatic Studies, 6(3), 292–300.

    Google Scholar 

  • Wang, C., Zou, X., Gao, J., Zhao, Y., Yu, W., Li, Y., & Song, Q. (2016). Pollution status of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River Estuary and its adjacent coastal zone. Chemosphere, 162, 80–90. https://doi.org/10.1016/j.chemosphere.2016.07.075

    Article  CAS  Google Scholar 

  • WHO. (1998). Health Criteria and Other Supporting Information - Addendum. In Guidelines for Drinking-Water Quality (Second edi, Vol. 2, Issue 1930128). World Health Organization 1998. https://apps.who.int/iris/handle/10665/38551.

  • WHO. (2011). Guidelines for drinking-water quality. World Health Organization.

    Google Scholar 

  • Wilson, P. C. (2010). Water quality notes : Dissolved oxygen 1. 1–8.

  • Yehouenou, E. A. P., Adamou, R., Azehoun, P. J., Edorh, P. A., & Ahoyo, P. (2013). Monitoring of heavy metals in the complex Nokoué lake -Cotonou and Porto-Novo lagoon. Research Journal of Chemical Sciences, 3(5), 12–18.

    CAS  Google Scholar 

  • Yessoufou, A., Ifon, B. E., Suanon, F., Dimon, B., Sun, Q., Dedjiho, C. A., Mama, D., & Yu, C. P. (2017). Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin. Environmental Monitoring and Assessment, 189(12), 1–12. https://doi.org/10.1007/s10661-017-6331-6

    Article  CAS  Google Scholar 

  • Yun, X., Yang, Y., Liu, M., Zhang, M., & Wang, J. (2016). Distribution, seasonal variations, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in the East L ake, China. Clean Soil Air Water, 44(5). https://doi.org/10.1002/clen.201400187

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, H., Goyette, D., & Sylvestre, S. (2002). <Yunker-2002-PAHs in the Fraser R.pdf>. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to acknowledge the German Academic Exchange Service, DAAD, for funding this research through the In-Region scholarship program at the University of Nigeria, Nsukka.

Funding

The German Academic Exchange Service, DAAD, provided funds for this research through the In-Region scholarship program at the University of Nigeria, Nsukka.

Author information

Authors and Affiliations

Authors

Contributions

All the authors collaborated in the research work. ZS designed the study, performed the field work, the statistical analysis, wrote the protocol and the first draft of the manuscript. Authors ZS and CE managed the analysis and the manuscript discussion. CDN managed the literature and the references. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Christopher D. Nwani.

Ethics declarations

Conflict of interest

The authors have no interest to declare that are relevant to the content of this article.

Ethical approval

Approval was obtained from the ethics committee of University of Nigeria Nsukka. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zonkpoedjre, S., Zonkpoedjre, S., Ezeorah, C. et al. Sources, pollution, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Porto-Novo Lagoon, Benin Republic. Environ Geochem Health 45, 825–841 (2023). https://doi.org/10.1007/s10653-022-01250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01250-8

Keywords

Navigation