Skip to main content

Advertisement

Log in

Anthropogenic aerosols in precipitation over the Indo-Gangetic basin

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study investigated the concentration of heavy metals in rainwater (RW) at a semi-arid region of the Indo-Gangetic basin to understand the influence of local, regional, or long-range transport of air pollutants during the monsoon and non-monsoonal rain. The concentration of heavy metals in RW was determined using Atomic Absorption Spectrophotometer with Graphite Furnace, the scavenging ratio was estimated, and source interpretation was carried out using Principle Component Analysis (PCA) and HYSPLIT model. Ca was the highest contributor in RW followed by Na, Fe, Mg, and Al whereas Ba, Cr, Cu, Mn, Ni, Pb, and Zn were found in trace quantity. During the non-monsoon period, the crustal component (Ca) was the highest; however, during the monsoon, sea salt components (Na and Fe) were found higher. The scavenging ratio for metals was estimated and was found many times higher than those reported over European sites. The moderate concentration of heavy metal in RW was found with higher wind from South (S), South-West (SW), and North-West (NW) directions. Air mass back trajectory shows a significant contribution of metals from the Arabian Sea (South-Westerly wind) during active monsoon, whereas, in the non-monsoon season, the air masses mainly originated from the north-west indicating a contribution from wind-blown dust. The correlation analysis has shown the positive correlations between Ca and Mg, Mg and Na, Na and Cu, Al and Zn, Zn and Ba, Ba and Cr, and Cr and Zn. Principal Component Analysis (PCA) indicated loading of Ca, Na, Mg, Cu, Mn, and Ni in the first factor suggesting their crustal origin, whereas the second factor showed high loading of Al, Ba, Zn, Cr, and Ni indicating vehicular exhaust and industrial emission as their major sources, and loading for Ba and Mg in the third factor indicates the mixed contribution from both natural and anthropogenic sources in rainwater during the monsoon and non-monsoon periods. The data of this study can be used in the air pollution transport model. This study will help in source interpretation over the Indo-Gangetic basin and will help in planning for National Clean Air Program (NCAP) and deriving critical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beattie, L. B., & Whelpdale, D. M. (1989). Meteorological characteristics of large acidic deposition events at Kejimukujik, Novascotia. Water, Air, and Soil Pollution, 46, 45–53.

    Article  CAS  Google Scholar 

  • Beidokhti, M. Z., Naeeni, S. T. O., & Ghahroudi, M. S. A. (2019). Biosorption of Nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civil Engineering Journal, 5(2), 447–457.

    Article  Google Scholar 

  • Benaissa, F., Bendahmane, I., Bourfis, N., Aoulaiche, O., & Alkama, R. (2019). Bioindication of urban air polycyclic aromatic hydrocarbons using petunia hybrida. Civil Engineering Journal, 5(6), 1305–1313. https://doi.org/10.28991/cej-2019-03091333

    Article  Google Scholar 

  • Bertrand, G., Jeanton, H. C., Laj, P., Rangognio, J., & Chazot, G. (2008). Rainfall chemistry: Long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60, 253–271. https://doi.org/10.1007/s10874-009-9120-y

    Article  CAS  Google Scholar 

  • Bhanarkar, A. D., Rao, P. S., Gajghate, D. G., & Nema, P. (2005). Inventory of SO2, PM and toxic metals emissions from industrial sources in Greater Mumbai, India. Atmospheric Environment, 39, 3851–3864. https://doi.org/10.1016/j.atmosenv.2005.02.052

    Article  CAS  Google Scholar 

  • Buaisha, M., Balku, S., & Yaman, S. (2020). Heavy metal removal investigation in conventional activated sludge systems. Civil Engineering Journal, 6(3), 470–477. https://doi.org/10.28991/cej-2020-03091484

    Article  Google Scholar 

  • Cadle, S. H., Vandekopple, R., Mulawa, P. A., & Dasch, J. M. (1990). Ambient concentrations, scavenging ratios and sources regions of acid related compounds and trace metals during winter in Northern Michigan. Atmospheric Environment, 24A, 2981–2989. https://doi.org/10.1007/BF00696557

    Article  CAS  Google Scholar 

  • Cerqueira, M. R. F., Pinto, M. F., Derossi, I. N., Esteves, W. T., Santos, M. D. R., Matos, M. A. C., Lowinsohn, D., & Matos, R. C. (2014). Chemical characteristics of rainwater at a south-eastern site of Brazil. Atmospheric Pollution Research, 5, 253–326. https://doi.org/10.5094/APR.2014.031

    Article  CAS  Google Scholar 

  • Chubaka, C. E., Whiley, H., Edwards, J. W., & Ross, K. E. (2018). Lead, zinc, copper, and cadmium content of water from south australian rainwater tanks. International Journal of Environmental Research and Public Health, 15, 1551. https://doi.org/10.3390/ijerph15071551

    Article  CAS  Google Scholar 

  • Davis, B. S., & Birch, G. F. (2011). Spatial distribution of bulk atmospheric deposition of heavy metals in Metropolitan Sydney, Australia. Water, Air, & Soil Pollution, 214, 147–162.

    Article  CAS  Google Scholar 

  • Derwent, R. G., Middleton, D. R., Field, R. A., Goldstone, M. E., Lester, J. N., & Perry, R. (1995). Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992. Atmospheric Environment, 29, 923–946. https://doi.org/10.1016/1352-2310(94)00219-B

    Article  CAS  Google Scholar 

  • Diaz, R. V., & Dominguez, E. R. (2009). Health risk by inhalation of PM2.5 in the metropolitan zone of the city of Mexico. Ecotoxicology and Environmental Safety, 72(3), 866–871. https://doi.org/10.1016/j.ecoenv.2008.09.014

    Article  CAS  Google Scholar 

  • Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non-mining areas of Dhanbad Region, Jharkhand, India. Atmospheric Pollution Research, 3, 238–246. https://doi.org/10.5094/APR.2012.026

    Article  CAS  Google Scholar 

  • Encinas, D., Calzada, I., & Casado, H. (2004). Scavenging ratios in an urban area in the Spanish Basque country. Aerosol Science and Technology, 38, 685–691. https://doi.org/10.1080/02786820490460716

    Article  CAS  Google Scholar 

  • Farahmandkia, Z., Mehrasbi, M. R., & Sekhavatjou, M. S. (2010). Relationship between concentrations of heavy metals in wet precipitation and atmospheric PM10 particles in Zanjan, Iran. Iranian Journal of Environmental Health Science and Engineering, 8(1), 49–56.

    Google Scholar 

  • Gray, C. W., Mclaren, R. G., & Roberts, A. H. C. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. The Science of the Total Environment, 305, 105–115. https://doi.org/10.1016/S0048-9697(02)00404-7

    Article  CAS  Google Scholar 

  • Greene, N. A., & Morris, V. R. (2006). Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. International Journal of Environmental Research and Public Health, 3(1), 86–97. https://doi.org/10.3390/ijerph2006030010

    Article  CAS  Google Scholar 

  • Guerzoni, S., Cristini, A., Caboi, R., Le Bolloch, O., Marras, I., & Rundeddu, L. (1995). Ionic composition of rainwater and atmospheric aerosols in Sardinia, Southern Mediterranean. Water, Air, & Soil Pollution, 85, 2977–2082.

    Article  Google Scholar 

  • Harrison, R. M., & Allen, A. G. (1991). Scavenging ratios and deposition of sulphur, nitrogen and chlorine species in eastern England. Atmospheric Environment, 25A, 1719–1723.

    Article  CAS  Google Scholar 

  • He, J., & Balasubramanian, R. (2008). Rain-aerosol coupling in the tropical atmosphere of Southeast Asia: Distribution and scavenging ratios of major ionic species. Journal of Atmospheric Chemistry, 60, 205–220.

    Article  CAS  Google Scholar 

  • Hopke, P. K., Cohen, D. D., Begum, B. A., Biswas, S. K., Nid, B., & Pandit, G. G. (2008). Urban air quality in the Asian region. Science of the Total Environment, 404, 103–112. https://doi.org/10.1016/j.scitotenv.2008.05.039

    Article  CAS  Google Scholar 

  • Huang, K., Zhuang, G. S., Xu, C., Wang, Y., & Tang, A. H. (2008). The chemistry of the severe acidic precipitation in Shanghai, China. Atmospheric Research, 89, 149–160. https://doi.org/10.1016/j.atmosres.2008.01.006

    Article  CAS  Google Scholar 

  • Jaffrezo, J. L., & Colin, J. L. (1988). Rain-aerosol coupling in urban area: Scavenging ratios measurements and identification of some transfer processes. Atmospheric Environment, 22, 929–935.

    Article  CAS  Google Scholar 

  • Jaffrezo, J. L., Colin, J. L., & Gros, J. M. (1990). Some physical factors influencing scavenging ratios. Atmospheric Environment, 24A, 3073–3083.

    Article  CAS  Google Scholar 

  • Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • Johansson, C., Norman, M., & Burman, L. (2009). Road traffic emission factors for heavy metals. Atmospheric Environment, 43, 4681–4688. https://doi.org/10.1016/j.atmosenv.2008.10

    Article  CAS  Google Scholar 

  • Kanellopoulou, E. A. (2001). Determination of heavy metal in wet deposition of Athens. Global NEST Journal, 3(1), 45–50.

    Google Scholar 

  • Kim, J. Y., Kim, K. W., Ahn, J. S., Ko, I., & Lee, C. H. (2005). Investigation and risk assessment modelling of as and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 27(2), 193–203. https://doi.org/10.1007/s10653-005-0127-2

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Kumar, N., Saxena, A., Khare, P., Kumari, K. M., & Srivastava, S. S. (1995). Chemical composition of atmospheric aerosols at three representative sites in Agra. Environmental Monitoring, 11, 177–181. https://doi.org/10.1023/A:1026424013890

    Article  Google Scholar 

  • Kulshrestha, U. C., Saxena, A., Kumar, N., Kumari, K. M., & Srivastava, S. S. (1994). Measurement of heavy metals in the ambient air of Agra. Indian Journal of Environmental Protection, 14(9), 685–687.

    Google Scholar 

  • Kulshrestha, U. C., Saxena, A., Kumar, N., Kumari, K. M., & Srivastava, S. S. (1998). Chemical composition association of size differentiated aerosols at a suburban site in a semi-arid tract of India. Journal of Atmospheric Chemistry, 29, 109–118. https://doi.org/10.1023/A:1005796400044

    Article  CAS  Google Scholar 

  • Kumar, R., Rani, A., Singh, S. P., Kumari, K. M., & Srivastava, S. S. (2002). A long term study on chemical composition of rainwater at Dayalbagh, a suburban site of semi arid region. Journal of Atmospheric Chemistry, 41, 265–279. https://doi.org/10.1023/A:1014955715633

    Article  CAS  Google Scholar 

  • Kumar, R., Srivastava, S. S., & Kumari, K. M. (2007). Characterization of size segregated aerosols at a suburban and urban site of semiarid region in India. Aerosol and Air Quality Research, 7(4), 531–549. https://doi.org/10.4209/aaqr.2007.02.0010

    Article  CAS  Google Scholar 

  • Latif, M. T., Ngah, S. A., Dominick, D., Razak, I. S., Guo, X., Srithawirat, T., & Mushrifah, I. (2015). Composition and source apportionment of dust fall around a natural lake. Journal of Environmental Sciences, 33, 143–155. https://doi.org/10.1016/j.jes.2015.02.002

    Article  CAS  Google Scholar 

  • Lee, C. S. L., Li, X. D., Zhang, G., Li, J., Ding, A. J., & Wang, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants. Atmospheric Environment, 41, 432–447. https://doi.org/10.1016/j.atmosenv.2006.07.035

    Article  CAS  Google Scholar 

  • Mahadevan, T. N., Negi, B. S., & Meenakshy, V. (1989). Measurements of elemental composition of aerosol matter and precipitation from a remote continental site in India. Atmospheric Environment, 23(4), 869–874. https://doi.org/10.1016/0004-6981(89)90493-9

    Article  Google Scholar 

  • Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment, 67, 278–286. https://doi.org/10.1016/j.atmosenv.2012.11.002

    Article  CAS  Google Scholar 

  • Melaku, S., Morris, V., Raghavan, D., & Hosten, C. (2008). Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environmental Pollution, 155, 88–98. https://doi.org/10.1016/j.envpol.2007.10.038

    Article  CAS  Google Scholar 

  • Migliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C. M., & Sanchez, J. (2005). Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil. Atmospheric Environment, 39, 1829–1844.

    Article  CAS  Google Scholar 

  • Moaref, S., Sekhavatjou, M. S., & Hosseini Alhashemi, A. (2014). Determination of trace elements concentration in wet and dry atmospheric Deposition and surface soil in the largest industrial city, Southwest of Iran. International Journal of Environmental Research, 8(2), 335–346. https://doi.org/10.22059/IJER.2014.724

    Article  Google Scholar 

  • Momin, G. A., Rao, P. S. P., Safai, P. D., Ali, K., Naik, M. S., & Pillai, A. G. (1999). Atmospheric aerosol characteristic studies at Pune and Thiruvanthapuram during INDOEX programme-1998. Current Science, 76(7), 985–989.

    Google Scholar 

  • Mulenga, D., & Siziya, S. (2019). Indoor air pollution related respiratory Ill health, a sequel of biomass use. SciMedicine Journal, 1(1), 30–37. https://doi.org/10.28991/SciMedJ-2019-0101-5

    Article  Google Scholar 

  • Nadzir, M. S. M., Lin, C. Y., Khan, M. F., Latif, M. T., Dominick, D., Hamid, H. H. A., Mohamad, N., Maulud, K. N. A., Wahab, M. I. A., Kamaludin, N. F., & Lazim, M. A. S. M. (2017). Characterization of rainwater chemical composition after a Southeast Asia haze event: Insight of trans boundary pollutant transport during the northeast monsoon. Environmental Science and Pollution Research, 24, 15278–15290. https://doi.org/10.1007/s11356-017-9131-1

    Article  CAS  Google Scholar 

  • Pal, R., Gupta, A., & Tripathi, A. (2014). Assessment of heavy metals in suspended particulate matter in Moradabad. India. J. Environ. Bio., 35, 357–361.

    Google Scholar 

  • Rao, P. S. P., Khemani, L. T., Momin, G. A., Safai, P. D., & Pillai, A. G. (1992). Measurements of wet and dry deposition at an urban location in India. Atmospheric Environment, 26B(1), 73–78.

    CAS  Google Scholar 

  • Rastogi, N., Singh, A., Sarin, M. M., & Singh, D. (2016). Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmospheric Environment, 125, 396–403. https://doi.org/10.1016/j.atmosenv.2015.06.010

    Article  CAS  Google Scholar 

  • Satsangi, G. S., Lakhani, A., Khare, P., Singh, S. P., Kumari, K. M., & Srivastava, S. S. (1998). Composition of rainwater at a semi-arid rural site. Atmospheric Environment, 32(21), 3783–3793. https://doi.org/10.1016/S1352-2310(98)00115-0

    Article  CAS  Google Scholar 

  • Sharma, A., Massey, D. D., & Taneja, A. (2017). A study of horizontal distribution pattern of particulate and gaseous pollutants based on ambient monitoring near a busy highway. Urban Climate. https://doi.org/10.1016/j.uclim.2017.08.003

    Article  Google Scholar 

  • Sharma, P., & Rai, V. (2018). Assessment of rain water chemistry in the Lucknow metropolitan city. Applied Water Science, 8, 67. https://doi.org/10.1007/s13201-018-0705-y

    Article  CAS  Google Scholar 

  • Singh, A., & Pandey, J. (2012). Chemical characterization of rain water in a seasonally dry tropical region (Varanasi), India. Journal of Environmental Biology, 33, 629–634.

    Google Scholar 

  • Singh, A., Tiwari, S., Sharma, D., Singh, D., Tiwari, S., Srivastava, A. K., Rastogi, N., & Singh, A. K. (2016). Characterization and radiative impact of dust aerosols over north-western part of India: A case study during a severe dust storm. Meteorology and Atmospheric Physics, 128, 779–792. https://doi.org/10.1007/s00703-016-0445-1

    Article  Google Scholar 

  • Singh, J., & Kalamdhad, A. S. (2011). Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research in Chemistry and Environment, 1(2), 15–21.

    Google Scholar 

  • Singh, A. K., & Mondal, G. C. (2008). Chemical characterization of wet precipitation events and deposition of pollutants in coal mining region, India. Journal of Atmospheric Chemistry, 59, 1–23. https://doi.org/10.1007/s10874-007-9092-8

    Article  CAS  Google Scholar 

  • Staszewski, T., Lukasik, W., & Kubiesa, P. (2012). Contamination of Polish national parks with heavy metals. Environmental Monitoring and Assessment, 184, 4597–4608. https://doi.org/10.1007/s10661-011-2288-z

    Article  CAS  Google Scholar 

  • Thomaidis, N. S., Bakeas, E. B., & Siskos, P. A. (2003). Characterization of lead, cadmium, arsenic and nickel in PM2:5 particles in the Athens atmosphere, Greece. Chemosphere, 52, 959–966. https://doi.org/10.1016/s0045-6535(03)00295-9

    Article  CAS  Google Scholar 

  • Tiwari, S., Tunved, P., Hopke, P. K., Srivastava, A. K., Bisht, D. S., & Pandey, A. K. (2016). Observations of ambient trace gas and PM10 concentrations at Patna Central Ganga Basin during 2013–2014: The influence of meteorological variables on atmospheric pollutants. Atmospheric Research, 180, 138–149. https://doi.org/10.1016/j.atmosres.2016.05.017

    Article  CAS  Google Scholar 

  • Tripathi, R. M., Ashawa, S. C., & Khandekar, R. N. (1993). Atmospheric deposition of Pb, Cr, Cu, and Zn in Bombay, India. Atmospheric Environment, 27B(2), 269–273.

    Google Scholar 

  • Wong, C. S. C., Li, X. D., Zhang, G., Qi, S. H., & Peng, X. Z. (2003). Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmospheric Environment, 37, 767–776. https://doi.org/10.1016/S1352-2310(02)00929-9

    Article  CAS  Google Scholar 

  • Xu, H., Bi, X. H., Feng, Y. C., Lin, F. M., Jiao, L., Hong, S. M., Liu, W. G., & Zhang, X. Y. (2011). Chemical composition of precipitation and its sources in Hangzhou, China. Environmental Monitoring and Assessment, 183, 581–592. https://doi.org/10.1007/s10661-011-1963-4

    Article  CAS  Google Scholar 

  • Zhou, B., Liu, D., & Yan, W. (2021). A simple new method for calculating precipitation scavenging effect on particulate matter: Based on five-year data in Eastern China. Atmosphere, 12(6), 759. https://doi.org/10.3390/atmos12060759

    Article  Google Scholar 

Download references

Acknowledgements

We are very much thankful to Prof. Sahab Dass, Head of, Department of Chemistry of the Institute for providing the necessary facility and kind encouragement. The financial assistance from the ISRO-GBP ARFI Project is gratefully acknowledged. Pratima Gupta is acknowledged for her help in the preparation of the revised manuscript. We also wish to thank reviewers for their valuable comments and suggestions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Khare, P., Singh, N. et al. Anthropogenic aerosols in precipitation over the Indo-Gangetic basin. Environ Geochem Health 45, 961–980 (2023). https://doi.org/10.1007/s10653-022-01236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01236-6

Keywords

Navigation