Skip to main content

Advertisement

Log in

Human health exposure and risks of arsenic from contaminated soils and brinjal fruits collected from different producers and retailers levels

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A quantitative assessment was attempted to determine concentrations of total arsenic (As) in farmer′s field soils and fruits of brinjal collected from two famous brinjals producing Upazila′s, namely Melandaha and Islampur of Jamalpur district, Bangladesh. The study also evaluated cancer and non-cancer health risks for both males and females caused by dermal exposure of soils and dietary intake of brinjal grown in farmers′ fields and sold at different markets of four country districts. The study findings revealed that 75% of soil sampling locations had enrichment factor (EFc) values > 1.5, indicating the anthropogenic sources of As, and 50% of the sites possessed EFc values within the range of 2.0–5.0 indicated moderate enrichment of As. The mean concentrations of As in brinjal grown in farmers′ fields and retailers of different markets of four districts were 0.18 and 0.39 µg g−1, respectively. The soils of the study area exhibited negligible risk in terms of the calculated hazard quotient, hazard index and incremental lifetiame cancer risk (ILCR) values for As due to dermal and ingestion exposures. In contrast, the same values for As due to the dietary intake of brinjal were thousands of times greater than the threshold level in 40% of farmers′ field and all retailers′ levels samples. Compared to the producer/farmers′ field samples, the calculated average non-carcinogenic and carcinogenic health risks were more than twice in samples collected from different retailers. The present study suggests further pinpoint investigation of potential entry routes of As in the supply chain through future traceability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Code availability

Not applicable.

References

  • Abdullah, M. I. C., Sah, A. S. R. M., & Haris, H. (2020). Geoaccumulation index and enrichment factor of arsenic in surface sediment of Bukit Merah Reservoir, Malaysia. Tropical Life Sciences Research, 31(3), 109–125. https://doi.org/10.21315/tlsr2020.31.3.8

    Article  Google Scholar 

  • Adebola, B. A. K., Joseph, K. S., & Adebayo, A. O. (2018). Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West Nigeria. Human and Ecological Risk Assessment, 24(2), 377–397. https://doi.org/10.1080/10807039.2017.1384694

    Article  CAS  Google Scholar 

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment. Springer. https://doi.org/10.1007/978-1-4757-1907-9_2

    Book  Google Scholar 

  • Ahmad, S. A., Khan, M. H., & Haque, M. (2018). Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Management and Healthcare Policy, 11, 251–261. https://doi.org/10.2147/RMHP.S153188

    Article  Google Scholar 

  • Ahmed, M. K., Shaheen, N., Islam, M. S., Al-Mamun, M. H., Islam, S., Islam, M. M., Kundu, G. K., & Bhattacharjee, L. (2016). A comprehensive assessment of arsenic in commonly consumed foodstuffs to evaluate the potential health risk in Bangladesh. Science of the Total Environment, 544, 125–133. https://doi.org/10.1016/j.scitotenv.2015.11.133

    Article  CAS  Google Scholar 

  • Akter, A., Mia, M. Y., & Zakir, H. M. (2015). Arsenic contamination in surface and groundwater in major parts of Manikganj district, Bangladesh. Journal of Bangladesh Agricultural University, 13(1), 47–54.

    Article  Google Scholar 

  • Alam, A. K. M. K., Coates, D. A., Mannan, K. H., Ahmed, D., & Hossain, S. (2008). Geology of parts of Tangail and Mymensingh Districts, Bangladesh. Records of the Geological Survey of Bangladesh, 11(5), 43p.

    Google Scholar 

  • Alam, M. B., & Sattar, M. A. (2000). Assessment of As contamination in soils and waters in some areas of Bangladesh. Water Science and Technology, 42, 185–193. https://doi.org/10.2166/wst.2000.0568

    Article  CAS  Google Scholar 

  • Alkhader, A. M. F. (2015). The impact of phosphorus fertilizers on heavy metals content of soils and vegetables grown on selected farms in Jordan. Agrotechnology, 5(1), 1000137. https://doi.org/10.4172/2168-9881.1000137

    Article  Google Scholar 

  • ATSDR. (2007). Toxicological Profile for Arsenic, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, USA.

  • Aysha, M. I. J., Zakir, H. M., Haque, R., Quadir, Q. F., Choudhury, T. R., Quraishi, S. B., & Mollah, M. Z. I. (2017). Health risk assessment for population via consumption of vegetables grown in soils artificially contaminated with arsenic. Archives of Current Research International, 10(3), 1–12. https://doi.org/10.9734/ACRI/2017/37612

    Article  Google Scholar 

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. Journal of Geology and Geophysics, 5(1), 237. https://doi.org/10.4172/2381-8719.1000237

    Article  Google Scholar 

  • BBS. (2013). District Statistics 2011, Jamalpur. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Govt. of the People’s Republic of Bangladesh. www.bbs.gov.bd

  • BBS. (2015). Health and morbidity status survey- 2014. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Govt. of the People’s Republic of Bangladesh. www.bbs.gov.bd

  • BBS. (2018). Statistical Pocket Book Bangladesh 2018. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Govt. of the People’s Republic of Bangladesh. www.bbs.gov.bd

  • BBS. (2021). Yearbook of Agricultural Statistics- 2020. Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Govt. of the People’s Republic of Bangladesh. www.bbs.gov.bd

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: A study in an arsenic affected area of West Bengal, India. Water Air and Soil Pollution, 213, 3–13. https://doi.org/10.1007/s11270-010-0361-9

    Article  CAS  Google Scholar 

  • Carlon, C. (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, ISPRA, EUR 22805-EN.

  • CCME (The Canadian Council of Ministers of the Environment). (1997). Recommended Canadian Soil Quality Guidelines. Guidelines Division, Science Policy and Environmental Quality Branch, Ecosystem Science Directorate, Environment Canada, Ottawa, Ontario, K1A 0H3. ISBN 1–895–925–92–4.

  • Chakraborty, S., Alam, M. O., Bhattacharya, T., & Singh, Y. N. (2014). Arsenic accumulation in food crops: A potential threat in Bengal Delta Plain. Water Quality Exposure and Health, 6, 233–246. https://doi.org/10.1007/s12403-014-0122-x

    Article  CAS  Google Scholar 

  • Dahal, B. M., Fuerhacker, M., Mentler, A., Karki, K. B., Shrestha, R. R., & Blum, W. E. H. (2008). Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environmental Pollution, 155, 157–163. https://doi.org/10.1016/j.envpol.2007.10.024

    Article  CAS  Google Scholar 

  • Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., Badruzzaman, A. B. M., & Kretzschmar, R. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy Soil. Environmental Science and Technology, 41, 5967–5972. https://doi.org/10.1021/es0702972

    Article  CAS  Google Scholar 

  • FAO. (1988). Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2. Agro-ecological regions of Bangladesh. Food and Agriculture Organization of the United Nations, Rome, Italy. pp. 212–221.

  • FAO/WHO. (2011). Joint FAO/WHO food standards programme. Codex Committee on Contaminants in Foods. Fifth Session. The Hague, The Netherlands. CF/5 INF/1.

  • Gergen, I., & Harmanescu, M. (2012). Application of principal component analysis in the pollution assessment with heavy metals of vegetable food chain in the old mining areas. Chemistry Central Journal, 6, 156. https://doi.org/10.1186/1752-153X-6-156

    Article  Google Scholar 

  • Gorny, J., Billon, G., Lesven, L., Dumoulin, D., Madé, B., & Noiriel, C. (2015). Arsenic behavior in river sediments under redox gradient: A review. Science of the Total Environment, 505, 423–434. https://doi.org/10.1016/j.scitotenv.2014.10.011

    Article  CAS  Google Scholar 

  • Guha Majumdar, D. N. (2008). Chronic arsenic toxicity & human health. Indian Journal of Medical Research, 128, 436–447.

    Google Scholar 

  • Hammer, Q., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

    Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. John Wiley & Sons Ltd. https://doi.org/10.1002/9781444319477

    Book  Google Scholar 

  • Hossain, M. B., Jahiruddin, M., Panaullah, G. M., Loeppert, R. H., Islam, M. R., & Duxbury, J. M. (2008). Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environmental Pollution, 156, 739–744. https://doi.org/10.1016/j.envpol.2008.06.015

    Article  CAS  Google Scholar 

  • Hossain, M. F. (2006). Arsenic contamination in Bangladesh—An overview. Agriculture, Ecosystems & Environment, 113, 1–16. https://doi.org/10.1016/j.agee.2005.08.034

    Article  CAS  Google Scholar 

  • Hossain, M. S., Khan, M. S. H., Chowdhury, K. R., & Abdullah, R. (2019). Synthesis of the tectonic and structural elements of the Bengal basin and its surroundings. In S. Mukherjee (Ed.), Tectonics & structural geology: Indian Context (pp. 135–218). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-99341_6

    Chapter  Google Scholar 

  • Huq, S. M. I., Joardar, J. C., Parvin, S., Correll, R., & Naidu, R. (2006). Arsenic contamination in food-chain: Transfer of arsenic into food materials through groundwater irrigation. Journal of Health Population and Nutrition, 24(3), 305–316.

    Google Scholar 

  • Islam, M. S., Ahmed, M. K., Al-Mamun, M. H., & Eaton, D. W. (2017). Arsenic in the food chain and assessment of population health risks in Bangladesh. Environment Systems and Decisions, 37, 344–352. https://doi.org/10.1007/s10669-017-9635-8

    Article  Google Scholar 

  • Jahan, S., & Strezov, V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin, 128, 295–306. https://doi.org/10.1016/j.marpolbul.2018.01.036

    Article  CAS  Google Scholar 

  • Kabata Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed., pp. 203–209). CRC Press.

    Google Scholar 

  • Kazi, T. G., Arain, M. B., Baig, J. A., Jamali, M. K., Afridi, H. I., & Jalbani, N. (2009). The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Science of the Total Environment, 407(3), 1019–1026. https://doi.org/10.1016/j.scitotenv.2008.10.013

    Article  CAS  Google Scholar 

  • Khan, S. I., Ahmed, A. K. M., Yunus, M., Rahman, M., Hore, S. K., Vahter, M., & Wahed, M. A. (2010). Arsenic and cadmium in food-chain in Bangladesh- an exploratory study. Journal of Health Population and Nutrition, 28(6), 578–584. https://doi.org/10.3329/jhpn.v28i6.6606

    Article  Google Scholar 

  • Khan, Z. I., Ahmad, K., Rehman, S., Siddique, S., Bashir, H., Zafar, A., Sohail, M., Ali, S. A., Cazzato, E., & Mastro, G. D. (2017). Health risk assessment of heavy metals in wheat using different water qualities: Implication for human health. Environmental Science and Pollution Research, 24, 947–955. https://doi.org/10.1007/s11356-016-7865-9

    Article  CAS  Google Scholar 

  • Kurosawa, K., Egashira, K., Tani, M., Jahiruddin, M., Moslehuddin, A. Z. M., & Rahman, Z. M. (2008). Groundwater-soil-crop relationship with respect to arsenic contamination in farming villages of Bangladesh—A preliminary study. Environmental Pollution, 156, 563–565. https://doi.org/10.1016/j.envpol.2008.02.009

    Article  CAS  Google Scholar 

  • Laizu, J. (2007). Speciation of arsenic in vegetables and their correlation with inorganic phosphate level. Bangladesh Journal of Pharmacology, 2(2), 88–94. https://doi.org/10.3329/bjp.v2i2.576

    Article  Google Scholar 

  • Lu, Y., Adomako, E. E., Solaiman, A. R. M., Islam, M. R., Deacon, C., Williams, P. N., Rahman, G., & Meharg, A. A. (2009). Baseline soil variation is a major factor in arsenic accumulation in Bengal delta paddy rice. Environmental Science and Technology, 43, 1724–1729. https://doi.org/10.1021/es802794w

    Article  CAS  Google Scholar 

  • Maity, J. P., Nath, B., Kar, S., Chen, C. Y., Banerjee, S., Jean, J. S., Liu, M. Y., Centeno, J. A., & Bhattacharya, P. (2012). Arsenic-induced health crisis in periurban Moyna and Ardebok villages, West Bengal, India: An exposure assessment study. Environmental Geochemistry and Health, 34(5), 563–574. https://doi.org/10.1007/s10653-012-9458-y

    Article  CAS  Google Scholar 

  • Mandal, K. B., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1), 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37(2), 229–334. https://doi.org/10.1021/es0259842

    Article  CAS  Google Scholar 

  • Misenheimer, J., Nelson, C., Huertas, E., Medina-Vera, M., Prevatte, A., & Bradham, K. (2018). Total and bioaccessible soil arsenic and lead levels and plant uptake in three urban community gardens in Puerto Rico. Geosciences, 8, 43. https://doi.org/10.3390/geosciences8020043

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine river. GeoJournal, 2(3), 108–118.

    Google Scholar 

  • Naeem, M. Y., & Ugur, S. (2019). Nutritional content and health benefits of eggplant. Turkish Journal of Agriculture - Food Science and Technology, 7, 31–36. https://doi.org/10.24925/turjaf.v7isp3.31-36.3146

    Article  Google Scholar 

  • Nagvi, S. M., Vaishnavi, C., & Singh, H. (1994). Arsenic in the Environment. Part II. Human Health and Ecosystem Effects. In Nriagu, J.O. (Ed), John Willey and Sons, Inc. New York, 55–91.

  • NEPC (National Environmental Protection Council). (2013). National environment protection (assessment of site contamination) Measure Schedule B5c. Guideline on ecological investigation levels for arsenic, chromium (III), copper, DDT, lead, naphthalene, nickel and zinc. Canberra, Australia.

  • NZWWA (New Zealand Water and Wastes Association). (2003). Guidelines for the safe application of biosolids to land in New Zealand. Wellington, New Zealand Water and Wastes Association. 177 p.

  • Oberoi, S., Barchowsky, A., & Wu, F. (2014). The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiology, Biomarkers & Prevention, 23(7), 1187–1194. https://doi.org/10.1158/1055-9965

    Article  CAS  Google Scholar 

  • OEHHA. (2019). California Office of Environmental Health Hazard Assessment (OEHHA). Technical Support Document for Cancer Potency Factors 2009, Appendix A: Hot Spots Unit Risk and Cancer Potency Values. Updated May 2019.

  • Rahman, M. M., & Naidu, R. (2010). Concentrations of arsenic and other metals in agricultural soils of Bangladesh. 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1–6 August 2010, Brisbane, Australia.

  • Rashid, M. A., Alam, S. N., Rouf, F. M. A., & Talekar, N. S. (2003). Socio-economic parameters of eggplant protection in Jessore district of Bangladesh. World Vegetable Center, Shanhua, Taiwan. AVRDC Publication No. 03–556. 29 pp.

  • Raza, M. S., Rahman, M. A., Rahaman, K. M. M., Juliana, F. M., Hossain, S., Rahman, A., Hossain, K., Alam, M. J., & Asaduzzaman, M. (2018). Present status of insecticides use for the cultivation of brinjal in Kushtia region, Bangladesh. International Journal of Engineering Science Invention, 7(1), 44–51.

    Google Scholar 

  • Rieuwerts, J. S. (2007). The mobility and bioavailability of trace metals in tropical soils: A review. Chemical Speciation and Bioavailability, 19(2), 75–85. https://doi.org/10.3184/095422907X211918

    Article  CAS  Google Scholar 

  • Roberts, L. C., Hug, S. J., Dittmar, J., Voegelin, A., Saha, G. C., Ali, M. A., Badruzzaman, A. B. M., & Kretzschmar, R. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. I. Irrigation Water. Environmental Science and Technology, 41, 5960–5966. https://doi.org/10.1021/es070298u

    Article  CAS  Google Scholar 

  • Safiuddin, M., Shirazi, S. M., & Yusoff, S. (2011). Arsenic contamination of groundwater in Bangladesh: A review. International Journal of Physical Sciences, 6(30), 6791–6800. https://doi.org/10.5897/IJPS11.1300

    Article  Google Scholar 

  • Samal, A. C., Kar, S., Bhattacharya, P., & Santra, S. C. (2011). Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. Journal of Environmental Science and Health - Part A, 46(11), 1259–1265. https://doi.org/10.1080/10934529.2011.598810

    Article  CAS  Google Scholar 

  • Santra, S. C., & Samal, A. C. (2013). Arsenic scenario in Gangetic delta of West Bengal: Risk and management. Ecoscan, 3, 41–55.

    Google Scholar 

  • Santra, S. C., Samal, A. C., Bhattacharya, P., Banerjee, S., Biswas, A., & Majumdar, J. (2013). Arsenic in foodchain and community health risk: A study in Gangetic West Bengal. Procedia Environmental Sciences, 18, 2–13. https://doi.org/10.1016/j.proenv.2013.04.002

    Article  CAS  Google Scholar 

  • Sharma, S., Kaur, I., & Nagpal, A. K. (2017). Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity. Environmental Science and Pollution Research, 24(23), 18836–18848. https://doi.org/10.1007/s11356-017-9401-y

    Article  CAS  Google Scholar 

  • Sharmin, S., Mia, J., Miah, M. S., & Zakir, H. M. (2020). Hydrogeochemistry and heavy metal contamination in groundwaters of Dhaka metropolitan city, Bangladesh: Assessment of human health impact. HydroResearch, 3, 106–117. https://doi.org/10.1016/j.hydres.2020.10.003

    Article  Google Scholar 

  • Singh, D., Chhonkar, P. K., & Pandey, R. N. (1999). Soil, plant and water analysis: A method manual. IARI.

    Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of World Health Organization, 78(9), 1093–1103.

    CAS  Google Scholar 

  • Smith, N. M., Lee, R., Heitkemper, D. T., Cafferky, K. D., Haque, A., & Henderson, A. K. (2006). Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Science of the Total Environment, 370, 294–301. https://doi.org/10.1016/j.scitotenv.2006.06.010

    Article  CAS  Google Scholar 

  • Stroud, J. L., Norton, G. J., Islam, M. R., Dasgupta, T., White, R. P., Price, A. H., Meharg, A. A., McGrath, S. P., & Zhao, F.-J. (2011). The dynamics of arsenic in four paddy fields in the Bengal delta. Environmental Pollution, 159, 947–953. https://doi.org/10.1016/j.envpol.2010.12.016

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundances of chemical elements in the continental crust: A new table. Geochimica & Cosmochimica Acta, 28, 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., & Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, 97, 4991–4996.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of the Geological Society of America, 72(2), 175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Article  CAS  Google Scholar 

  • USEPA. (1999). Screening Level Ecological Risk Assessment Protocol. Appendix E: Toxicity Reference Values. EPA 530-D99–001C. U. S. EPA Region 6, Office of Solid Waste.

  • USEPA. (2001). Risk Assessment Guidance for Superfund: Volume III - Part A, Process for Conducting Probabilistic Risk Assessment. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency Washington, DC 20460. EPA 540-R-02–002.

  • USEPA. (2002). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency Washington, DC 20460. OSWER 9355.4–24.

  • USEPA. (2004). Risk assessment guidance for superfund. Volume 1: Human health evaluation manual (Part E, Supplemental guidance for dermal risk assessment). EPA/540/R/99/005. Office of Superfund Remediation and Technology Innovation, Washington, DC, USA.

  • USEPA. (2020). Regional Screening Levels (RSLs) - Generic Tables. Tables as of: November 2020. Summary Table. Available from: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. Retrieved on January 26, 2021.

  • WHO. (2018). Arsenic. Published on February 15, 2018. Available from: http://www.who.int/news-room/fact-sheets/detail/arsenic. Retrieved on January 16, 2021.

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39, 5531–5540. https://doi.org/10.1021/es0502324

    Article  CAS  Google Scholar 

  • Xue, L., Zhao, Z., Zhang, Y., Liao, J., Wu, M., Wang, M., Sun, J., Gong, H., Guo, M., Li, S., & Zheng, Y. (2020). Dietary exposure to arsenic and human health risks in western Tibet. Science of the Total Environment, 731, 138840. https://doi.org/10.1016/j.scitotenv.2020.138840

    Article  CAS  Google Scholar 

  • Zakir, H. M., Quadir, Q. F., & Mollah, M. Z. I. (2021). Human health risk assessment of heavy metals through the consumption of common foodstuffs collected from two divisional cities of Bangladesh. Exposure and Health, 13, 253–268. https://doi.org/10.1007/s12403-020-00380-7

    Article  CAS  Google Scholar 

  • Zakir, H. M., Sharmin, S., Akter, A., & Rahman, M. S. (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area, Bangladesh. Environmental Advances, 2, 100005. https://doi.org/10.1016/j.envadv.2020.100005

    Article  Google Scholar 

  • Zakir, H. M., & Shikazono, N. (2008). Metal fractionation in sediments: A comparative assessment of four sequential extraction schemes. Journal of Environmental Science for Sustainable Society, 2, 1–12. https://doi.org/10.3107/jesss.2.1

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070. https://doi.org/10.1006/ecss.2001.0879

    Article  CAS  Google Scholar 

Download references

Funding

No financial support was received to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Zakir.

Ethics declarations

Conflict of interest

Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is no conflict of interest among the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge.

Ethical approval

All studies were conducted in accordance with principles for international, national, and/or institutional guidelines for the care and use of animals. This article does not contain any studies involving human participants performed by any of the authors. The manuscript in part or in full has not been submitted or published anywhere.

Consent for publication

All of the authors have read and approved the paper for submission of publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakir, H.M., Quadir, Q.F., Bushra, A. et al. Human health exposure and risks of arsenic from contaminated soils and brinjal fruits collected from different producers and retailers levels. Environ Geochem Health 44, 4665–4683 (2022). https://doi.org/10.1007/s10653-022-01227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01227-7

Keywords

Navigation