Skip to main content

Advertisement

Log in

Distribution, risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of East India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study investigated 16 United States environmental protection agency priority PAHs profiles and their sources in 40 urban soils collected from two industrialised cities, Jamshedpur and Bokaro, in east India and assessed their health risk to humans. The results showed the predominance of high molecular weight (HMW) PAHs (4–5 rings). The total PAHs concentration in surface soils ranged from 2223 to 11,266 ng/g and 729 to 5359 ng/g (dw), respectively, for Jamshedpur and Bokaro. Higher concentrations of PAHs were recorded at the selected industrial areas and heavy traffic zones of both cities. In JSR city 4-ring PAHs contributed 43% of total PAHs trailed by 5-ring PAHs 27.2%. Similarly, in BKR city 4-ring PAHs contributed 34% of the total PAHs, followed by 3-ring PAHs 28.9% and 5-ring PAHs 22.9%. Total organic carbon in surface soils exhibited moderate correlation with the low molecular weight (ΣLMW) PAHs (R2 = 0.69) and a comparatively strong correlation with the ΣHMW PAHs (R2 = 0.89), suggesting strong adsorption of HMW PAHs to urban soils. The Diagnostic and PMF modelling analysis indicated that the major sources of PAHs contamination in soils were petroleum combustion, vehicular emissions, biomass, and coal combustion. The health risk assessment shows that the cumulative probability of carcinogenic risks was under the acceptable limits of 10–4 to 10–6. At some sampling areas in both cities, the maximum value of total exposure cancer risk slightly exceeded the acceptable limits indicating some carcinogenic risk for adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons : Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123.

    Article  Google Scholar 

  • Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2017). Petroleum hydrocarbon fingerprints of water and sediment samples of Buffalo River Estuary in the Eastern Cape Province, South Africa. Journal of Analytical Methods in Chemistry. https://doi.org/10.1155/2017/2629365

    Article  Google Scholar 

  • Agarwal, T. (2009). Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi India. Journal of Hazardous Materials., 171, 894–900.

    Article  CAS  Google Scholar 

  • Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163, 1033–1039.

    Article  CAS  Google Scholar 

  • Ambade, B., & Sethi, S. S. (2021). Health risk assessment and characterization of Polycyclic aromatic hydrocarbon from the hydrosphere. Journal of Hazardous, Toxic and Radioactive Waste, 25(2), 05020008. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000586

    Article  CAS  Google Scholar 

  • Ambade, B., Sethi, S. S., Kumar, A., Sankar, T. K., & Kurwadkar, S. (2020). Health risk assessment, composition, and distribution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Southern Jharkhand, East India. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-020-00779-y

    Article  Google Scholar 

  • Aziz, F., Syed, J. H., Malik, R. N., Katsoyiannis, A., Mahmood, A., Li, J., et al. (2014). Occurrence of polycyclic aromatic hydrocarbons in the Soan River, Pakistan: Insights into distribution, composition, sources and ecological risk assessment. Ecotoxicology and Environmental Safety, 109, 77–84.

    Article  CAS  Google Scholar 

  • Bao, H., Hou, S., Niu, H., Tian, K., Liu, X., & Wu, F. (2018). Status, sources, and risk assessment of polycyclic aromatic hydrocarbons in urban soils of Xi’an, China. Environmental Science and Pollution Research, 25(19), 18947–18959.

    Article  CAS  Google Scholar 

  • Buczynskaa, J., Geypens, B., Van Grieken, R., & De Wael, K. (2013). Stable carbon isotopic ratio measurement of polycyclic aromatic hydrocarbons as a tool for source identification and apportionmentea review of analytical methodologies. Talanta, 105, 435–450.

    Article  Google Scholar 

  • Cai, C., Li, J., Wu, D., Wang, X., Tsang, D. C. W., Li, X., Sun, J., Zhu, L., Shen, H., Tao, S., & Liu, W. (2017). Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere, 178, 301–308.

    Article  CAS  Google Scholar 

  • Cai, Q. Y., Mo, C. H., Li, Y. H., Zeng, Q. Y., Katsoyiannis, A., Wu, Q. T., & Ferard, J. F. (2007). Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, south China. Chemosphere, 68, 159–168.

    Article  CAS  Google Scholar 

  • Callén, M. S., Iturmendi, M., & López, J. M. (2014). Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptormodel. Assessment of potential risk for human health. Environmental Pollution, 195, 167–177.

    Article  Google Scholar 

  • Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection and food security. CATENA, 69(1), 1–15.

    Article  Google Scholar 

  • Chen, Y., Tian, C., Li, K., Cui, X., Wu, Y., & Xia, Y. (2016). Influence of thermal maturity on Carbon isotopic composition of individual aromatic hydrocarbons during anhydrous closed-system pyrolysis. Fuel, 186, 466–475. https://doi.org/10.1016/j.fuel.2016.08.102

    Article  CAS  Google Scholar 

  • Collins, J. F., Brown, J. P., Alexeeff, G. V., & Salmon, A. G. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28, 45–54.

    Article  CAS  Google Scholar 

  • Devi, N. L., Yadav, I. C., Shihua, Q., Dan, Y., Zhang, G., & Raha, P. (2016). Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere, 144, 493–502. https://doi.org/10.1016/j.chemosphere.2015.08.062

    Article  CAS  Google Scholar 

  • Ducoulomber, C. C., & Rychen, G. (2003). Assessment of soil and grass polycyclic aromatic hydrocarbon (PAH) contamination levels in agricultural fields located near a motorway and an airport. Agronomie, 23, 345–348.

    Article  Google Scholar 

  • Duval, M. M., & Friedlander, S. K. (1981). Source resolution of polycyclic aromatic hydrocarbons in the Los Angeles atmospheres application of a CMB with first order decay. U.S. EPA Report EPA-600/2–81–161. U.S. Government Printing Office.

  • FAO. (2017). The future of food and agriculture. Food and Agriculture Organisation of the United Nations, (p. 163).

  • Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172, 532–549.

    Article  CAS  Google Scholar 

  • Gao, P., da Silva, E., Hou, L., Denslow, N. D., Xiang, P., & Ma, L. Q. (2018). Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environment International, 119, 466–477.

    Article  CAS  Google Scholar 

  • Gupta, H., & Kumar, R. (2019). Distribution of some polycyclic aromatic hydrocarbons in urban soils of Delhi, India. Environmental Technology and Innovation. https://doi.org/10.1016/j.eti.2019.100500

    Article  Google Scholar 

  • Harner, T., & Bidleman, T. F. (1998). Octanoleair partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science and Technology, 32, 1494–1502.

    Article  CAS  Google Scholar 

  • Hui, W. C., Hua, W. S., Zhou, S. L., Wang, H., Jie, L. B., Chen, H., Yu, Y. N., & Shi, Y. X. (2015). Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Science of the Total Environment, 527–528, 375–383.

    Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. Prentice Hall of India Pvt. Ltd.

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., et al. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35(11), 2288–2294.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Kumar, A., Ambade, B., Sankar, T. K., Sethi, S. S., & Kurwadkar, S. (2020). Source identification and health risk assessment of atmospheric PM2.5- bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable Cities and Society, 52, 101–801.

    Article  Google Scholar 

  • Kumar, V., Kothiyal, N. C., Saruchi Mehra, R., Prakash, A., Sinha, R. R., Tyagi, S. K., & Gaba, R. (2014). Determination of some carcinogenic PAHs with toxic equivalency factor along roadside soil within a fast developing northern city of India. Journal of Earth System Science, 123(3), 479–489.

    Article  CAS  Google Scholar 

  • Li, J., Zheng, Y., Luo, X., Lin, Z., Zhang, W., & Wang, X. (2016). PAH contamination in Beijing’s topsoil: a unique indicator of the megacity’s evolving energy consumption and overall environmental quality. Scientific Report, 6, 33245. https://doi.org/10.1038/srep33245

    Article  CAS  Google Scholar 

  • Liu, Y. G., Gao, P., Su, J., Da Silva, E. B., de Oliveira, L. M., Townsend, T., et al. (2019). PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere, 214, 220–227.

    Article  CAS  Google Scholar 

  • Marinho, R. A. P., Shepherd, T., Nowell, G., Cachada, A., Duarte, A. C., Cave, M., et al. (2016). Source and pathway analysis of lead and polycyclic aromatic hydrocarbons in Lisbon urban soils. Science of the Total Environment, 573, 324–336.

    Article  Google Scholar 

  • Matar, T., Stefano, A., Marcello, D. B., Annamaria, L., Daniela, Z., Roberto, R., et al. (2019). Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environmental Geochemistry and Health, 41(2), 507–528.

    Article  Google Scholar 

  • Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: Soils as an indicator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environmental Research, 81, 117–129.

    Article  CAS  Google Scholar 

  • Norra, S., & Stüben, D. (2003). Urban soils. Journal of Soil Sediment, 3, 230–233.

    Article  Google Scholar 

  • Omores, R. A., Wewers, F., Ikhide, P. O., Farrar, T., & Giwa, A. (2017). Spatio-temporal distribution of polycyclic aromatic hydrocarbons in urban soils in Cape Town, South Africa. International Journal of Environmental Research, 11(2), 189–196.

    Article  CAS  Google Scholar 

  • Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36(17), 2917–2924.

    Article  CAS  Google Scholar 

  • Pavao-Zuckerman, M. A., & Byrne, L. B. (2009). Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosystems, 12, 9–20.

    Article  Google Scholar 

  • Pokhrel, B., Gong, P., Wang, X., Chen, M., & Gao, S. (2018). Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal. Chemosphere, 200, 532–541.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van-Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Ray, S., Khillare, P. S., Agarwal, T., & Shridhar, V. (2008). Assessment of PAHs in soil around the International Airport in Delhi, India. Journal of Hazardous Materials, 156, 9–16.

    Article  CAS  Google Scholar 

  • Rossiter, D. G. (2007). Classification of urban and industrial soils in the world reference base for soil resources. Journal of Soils and Sediments, 7, 96–100.

    Article  CAS  Google Scholar 

  • Singh, D. P., Gadi, R., & Mandal, T. K. (2012). Levels, sources, and toxic potential of polycyclic aromatic hydrocarbons in urban soil of Delhi, India. Human Ecological Risk Assessment: An International Journal, 18, 393–411.

    Article  CAS  Google Scholar 

  • Skrbic, B., Cvejanov, J., & Durisic-Mladenovic, N. (2005). Polycyclic aromatic hydrocarbons in surface soils of Novi Sad and bank sediment of the Danube river. Journal of Environmental Science and Health Part a: Environmental Science Engineering, 40, 29–42.

    Article  Google Scholar 

  • Skrbic, B. D., Ðurisˇic´-Mladenovic´, N., Tadic´, Ð. J., & Cvejanov, J. Ð. (2017). Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: Occurrence and cancer risk assessment. Environmental Science and Pollution Research, 24, 16148–16159.

    Article  CAS  Google Scholar 

  • Suman, S., Sinha, A., & Tarafdar, A. (2016). Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of Total Environment, 545–546, 353–360. https://doi.org/10.1016/j.scitotenv.2015.12.061

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • USEPA. (2001). Risk assessment guidance for superfund: Volume III part A, process for conducting probabilistic risk assessment. US Environmental Protection Agency.

  • USEPA. (2005). Guidelines for carcinogen risk assessment, EPA/630/P- 03/001F. Risk assessment forum. United States Environmental Protection Agency.

  • Walkley, A., & Black, C. A. (1934). An estimation method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–33.

    Article  CAS  Google Scholar 

  • Wang, C., Wang, J., Zhou, S., Tang, J., Jia, Z., Ge, L., Li, Y., & Wu, S. (2020). Polycyclic aromatic hydrocarbons and heavy metals in urban environments: Concentrations and joint risks in surface soils with diverse land uses. Land Degradation and Development, 31, 383–391.

    Article  Google Scholar 

  • Wang, D., Zhu, S., Wang, L., Zhen, Q., Han, F., & Zhang, X. (2020). Distribution, origins and hazardous E_ects of polycyclic aromatic hydrocarbons in Topsoil Surrounding Oil Fields: A case study on the Loess Plateau, China. International Journal of Environmental Research and Public Health, 17, 1390.

    Article  CAS  Google Scholar 

  • Wang, J. Z., Cao, J. J., Dong, Z. B., Guinot, B. J. M., Gao, M. L., Huang, R. J., et al. (2017). Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: The effects of suburban scattered emissions in winter. Environmental Pollution, 231, 1330–1343.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M. J., Kang, Y., et al. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409(21), 4519. https://doi.org/10.1016/j.scitotenv.2011.07.030

    Article  CAS  Google Scholar 

  • Wang, Y., Miao, Y., Zhang, Y. C., Li, M. H., & Wu Yu, G. (2013). Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.

    Article  CAS  Google Scholar 

  • Xing-Hong, L., Ling-Ling, M. A., Xiu-Fen, L., Shan, F., Hang-Xin, C., & Xiao-Bai, X. (2006). Polycyclic aromatic hydrocarbon in urban soil from Beijing. Journal of Environmental Science, 18(5), 944–950.

    Article  Google Scholar 

  • Yang, B., et al. (2013). Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 443(31), 39.

    Google Scholar 

  • Yang, J. Y., Yu, F., Yu, Y. C., Zhang, J. Y., Wang, R. H., Srinivasulu, M., & Vasenev, V. I. (2017). Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in urban soil of Nanjing, China. Journal of Soils Sediments, 17, 1116–1125.

    Article  CAS  Google Scholar 

  • Zhang, D., Wang, J., & Zeng, H. (2016). Soil polycyclic aromatic hydrocarbons across urban density zones in Shenzhen, China: Occurrences, source apportionments, and spatial risk assessment. Pedosphere, 26, 676–686.

    Article  CAS  Google Scholar 

  • Zhang, H., Wang, J., Bao, H., Li, J., & Wu, F. (2020). Polycyclic aromatic hydrocarbons in urban soils of Zhengzhou city, China: Occurrence, source and human health evaluation. Bulletin of Environment Contamination and Toxicology, 105(3), 446–452. https://doi.org/10.1007/s00128-020-02982-y

    Article  CAS  Google Scholar 

  • Zhou, Y., & Lu, X. (2017). Assessment of pollution, sources, and risks of polycyclic aromatic hydrocarbons in soil from urban parks in Xi’an city. China Environmental Science, 38, 4800–4808.

    Google Scholar 

Download references

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

BA, SSS managed the project; BA and SSS collected the samples; CMR and SSS prepared and analysed the samples; BA and SSS wrote the manuscript.

Corresponding author

Correspondence to Balram Ambade.

Ethics declarations

Conflict of interest

The authors wish to declare that there is no conflict of interest regarding the publication of this manuscript.

Consent to publish

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambade, B., Sethi, S.S. & Chintalacheruvu, M.R. Distribution, risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) using positive matrix factorization (PMF) in urban soils of East India. Environ Geochem Health 45, 491–505 (2023). https://doi.org/10.1007/s10653-022-01223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01223-x

Keywords

Navigation