Skip to main content
Log in

Dilution of concentrations of PAHs from atmospheric particles, bulk deposition to soil: a review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are emitted to the atmosphere by various anthropogenic activities as well as natural sources, they undergo long-range transport, are degraded (e.g., by photolysis) and finally they are deposited onto the surface and potentially accumulate in topsoil. The dry deposition of particle-bound PAHs dominates the accumulation of PAHs in soil and their further fate in soil is governed by sorption/desorption from these airborne particles. This paper offers an overview on concentrations of particle-bound PAHs, the dry deposition fluxes and finally concentrations of PAHs in soil. In addition, spatial and temporal variations of PAHs are considered. The results show that concentrations of particle-bound PAHs typically range from 1 mg g−1 up to 10 mg g−1 in cities with coal-based heating in winter and in countries with coal-based industry incl. electrical power production. These values are very high and exceed the legal limits set in soils by orders of magnitude. Atmospheric deposition rates typically reach several mg m−2 a−1, but in winter, especially in countries with heating, deposition rates are up to 10 times higher. PAHs concentrations in soils show a very wide variation from less than 1 µg g−1 in rural areas up to 10 µg g−1 in urban space, which is about 1000 times lower than the concentration of PAHs on particles in the atmosphere. This demonstrates the relevance of high concentrations of PAHs on airborne particles deposited on soils, which also highlights the importance of considering incremental lifetime cancer risk models for both air and soil and assessing the total health risk of PAHs to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article.

References

  • Abdel-Shafy, H. I., & Mansour, M. S. (2016a). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.

    Article  Google Scholar 

  • Agency, U.E.P. (2009) risk assessment guidance for superfund, volume I: Human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment)(EPA-540-R-070-002), office of superfund remediation and technology innovation Washington, DC.

  • Aichner, B., Bussian, B. M., Lehnik-Habrink, P., & Hein, S. (2015). Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils. Environmental Pollution, 203, 31–39. https://doi.org/10.1016/j.envpol.2015.03.026

    Article  CAS  Google Scholar 

  • Arellano, L., Fernández, P., López, J., Rose, N. L., Nickus, U., Thies, H., Stuchlik, E., Camarero, L., Catalan, J., & Grimalt, J. O. (2014). Atmospheric deposition of polybromodiphenyl ethers in remote mountain regions of Europe. Atmospheric Chemistry and Physics, 14(9), 4441–4457. https://doi.org/10.5194/acp-14-4441-2014

    Article  CAS  Google Scholar 

  • Bae, S. Y., Yi, S. M., & Kim, Y. P. (2002). Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea. Atmospheric Environment, 36(35), 5491–5500. https://doi.org/10.1016/S1352-2310(02)00666-0

    Article  CAS  Google Scholar 

  • Balmer, J. E., Hung, H., Yu, Y., Letcher, R. J., & Muir, D. C. (2019). Sources and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in the Arctic. Emerging Contaminants, 5, 128–142. https://doi.org/10.1016/j.emcon.2019.04.002

    Article  Google Scholar 

  • Billet, S., Abbas, I., Le Goff, J., Verdin, A., André, V., Lafargue, P.-E., Hachimi, A., Cazier, F., Sichel, F., & Shirali, P. (2008). Genotoxic potential of polycyclic aromatic hydrocarbons-coated onto airborne particulate matter (PM2.5) in human lung epithelial A549 cells. Cancer Letters, 270(1), 144–155. https://doi.org/10.1016/j.canlet.2008.04.044

    Article  CAS  Google Scholar 

  • Birgül, A., Tasdemir, Y., & Cindoruk, S. S. (2011). Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmospheric Research, 101(1–2), 341–353. https://doi.org/10.1016/j.atmosres.2011.03.012

    Article  CAS  Google Scholar 

  • Błaszczyk, E., Rogula-Kozłowska, W., Klejnowski, K., Fulara, I., & Mielżyńska-Švach, D. (2017). Polycyclic aromatic hydrocarbons bound to outdoor and indoor airborne particles (PM2.5) and their mutagenicity and carcinogenicity in Silesian kindergartens, Poland. Air Quality, Atmosphere & Health, 10(3), 389–400. https://doi.org/10.1007/s11869-016-0457-5

    Article  CAS  Google Scholar 

  • Bozlaker, A., Muezzinoglu, A., & Odabasi, M. (2008). Atmospheric concentrations, dry deposition and air–soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey. Journal of Hazardous Materials, 153(3), 1093–1102. https://doi.org/10.1016/j.jhazmat.2007.09.064

    Article  CAS  Google Scholar 

  • Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1–2), 85–97. https://doi.org/10.1016/S0304-4203(97)00028-5

    Article  CAS  Google Scholar 

  • Butler, J., Butterworth, V., Kellow, S. C., & Robinson, H. G. (1984). Some observations on the polycyclic aromatic hydrocarbon (PAH) content of surface soils in Urban areas. Science of the Total Environment, 33(1–4), 75–85. https://doi.org/10.1016/0048-9697(84)90382-6

    Article  CAS  Google Scholar 

  • Byambaa, B., Yang, L., Matsuki, A., Nagato, E. G., Gankhuyag, K., Chuluunpurev, B., Banzragch, L., Chonokhuu, S., Tang, N., & Hayakawa, K. (2019). Sources and characteristics of polycyclic aromatic hydrocarbons in ambient total suspended particles in Ulaanbaatar City, Mongolia. International Journal of Environmental Research and Public Health, 16(3), 442. https://doi.org/10.3390/ijerph16030442

    Article  CAS  Google Scholar 

  • CCME. (2010). Canadian soil quality guidelines for potentially carcinogenic and other PAHs: Scientific criteria document. CCME Winnipeg.

    Google Scholar 

  • Cébron, A., Norini, M.-P., Beguiristain, T., & Leyval, C. (2008). Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. Journal of Microbiological Methods, 73(2), 148–159. https://doi.org/10.1016/j.mimet.2008.01.009

    Article  CAS  Google Scholar 

  • Chantara, S., & Sangchan, W. (2009). Sensitive analytical method for particle-bound polycyclic aromatic hydrocarbons: A case study in Chiang Mai, Thailand. ScienceAsia, 35(1), 42–48. https://doi.org/10.2306/scienceasia1513-1874.2009.35.042

    Article  CAS  Google Scholar 

  • Chen, F., Hu, W., & Zhong, Q. (2013). Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan tunnel of Nanjing, China. Atmospheric Research, 124, 53–60. https://doi.org/10.1016/j.atmosres.2012.12.008

    Article  CAS  Google Scholar 

  • Cheng, C., Bi, C., Wang, D., Yu, Z., & Chen, Z. (2018). Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: The spatio-temporal variation and source identification. Frontiers of Earth Science, 12(1), 63–71. https://doi.org/10.1016/j.envpol.2017.07.022

    Article  CAS  Google Scholar 

  • Choi, S.-D., Shunthirasingham, C., Daly, G. L., Xiao, H., Lei, Y. D., & Wania, F. (2009). Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads. Environmental Pollution, 157(12), 3199–3206. https://doi.org/10.1016/j.envpol.2009.05.032

    Article  CAS  Google Scholar 

  • Chuesaard, T., Chetiyanukornkul, T., Kameda, T., Hayakawa, K., & Toriba, A. (2013). Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol and Air Quality Research, 14(4), 1247–1257. https://doi.org/10.4209/aaqr.2013.05.0161

    Article  CAS  Google Scholar 

  • da Rocha, G. O., Lopes, W. A., de Paula Pereira, P. A., de Castro Vasconcellos, P., Oliveira, F. S., Carvalho, L. S., dos Conceição Santos, L., & de Andrade, J. B. (2009). Quantification and source identification of atmospheric particulate polycyclic aromatic hydrocarbons and their dry deposition fluxes at three sites in Salvador Basin, Brazil, impacted by mobile and stationary sources. Journal of the Brazilian Chemical Society, 20(4), 680–692. https://doi.org/10.1590/s0103-50532009000400012

    Article  Google Scholar 

  • da Rocha, G. O., Lopes, W. A., Pereira, P. A., de Castro Vasconcellos, P., Oliveira, F. S., Carvalho, L. S., dos Santos Conceição, L., & de Andrade, J. B. (2009). Quantification and source identification of atmospheric particulate polycyclic aromatic hydrocarbons and their dry deposition fluxes at three sites in Salvador Basin, Brazil, impacted by mobile and stationary sources. Journal of the Brazilian Chemical Society, 20(4), 680–692. https://doi.org/10.1590/s0103-50532009000400012

    Article  Google Scholar 

  • Dachs, J., & Eisenreich, S. J. (2000). Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environmental Science & Technology, 34(17), 3690–3697. https://doi.org/10.1021/es991201+

    Article  CAS  Google Scholar 

  • Deary, M. E., Ekumankama, C. C., & Cummings, S. P. (2016). Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants. Journal of Hazardous Materials, 307, 240–252. https://doi.org/10.1016/j.jhazmat.2015.12.015

    Article  CAS  Google Scholar 

  • Demircioglu, E., Sofuoglu, A., & Odabasi, M. (2011). Particle-phase dry deposition and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in Izmir, Turkey. Journal of Hazardous Materials, 186(1), 328–335. https://doi.org/10.1016/j.jhazmat.2010.11.005

    Article  CAS  Google Scholar 

  • Devi, N. L., Yadav, I. C., Shihua, Q., Dan, Y., Zhang, G., & Raha, P. (2016). Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere, 144, 493–502. https://doi.org/10.1016/j.chemosphere.2015.08.062

    Article  CAS  Google Scholar 

  • Dong, T. T., Stock, W. D., Callan, A. C., Strandberg, B., & Hinwood, A. L. (2020). Emission factors and composition of PM2. 5 from laboratory combustion of five Western Australian vegetation types. Science of the Total Environment, 703, 134796. https://doi.org/10.1016/j.scitotenv.2019.134796

    Article  CAS  Google Scholar 

  • Dong, Z., Jiang, N., Zhang, R., Xu, Q., Ying, Q., Li, Q., & Li, S. (2020). Molecular characteristics, source contributions, and exposure risks of polycyclic aromatic hydrocarbons in the core city of Central Plains Economic Region, China: Insights from the variation of haze levels. Science of the Total Environment, 757, 143885. https://doi.org/10.1016/j.scitotenv.2020.143885

    Article  CAS  Google Scholar 

  • Du, W., Yun, X., Luo, Z., Chen, Y., Liu, W., Sun, Z., Zhong, Q., Qiu, Y., Li, X., & Zhu, Y. (2019). Submicrometer PM1. 0 exposure from household burning of solid fuels. Environmental Science & Technology Letters, 7(1), 1–6. https://doi.org/10.1021/acs.estlett.9b00633

    Article  CAS  Google Scholar 

  • Edwards, N. T. (1983). Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment—a review. Journal of Environmental Quality, 12(4), 427–441. https://doi.org/10.2134/jeq1983.00472425001200040001x

    Article  CAS  Google Scholar 

  • Fazeli, G., Karbassi, A., Khoramnejadian, S., & Nasrabadi, T. (2019). Evaluation of Urban soil pollution: A combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). International Journal of Environmental Research, 13(5), 801–811.

    Article  CAS  Google Scholar 

  • Feng, D., Liu, Y., Gao, Y., Zhou, J., Zheng, L., Qiao, G., Ma, L., Lin, Z., & Grathwohl, P. (2017). Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison. Environmental Pollution, 230, 639–647. https://doi.org/10.1016/j.envpol.2017.07.022

    Article  CAS  Google Scholar 

  • Fernández, P., Carrera, G., Grimalt, J. O., Ventura, M., Camarero, L., Catalan, J., Nickus, U., Thies, H., & Psenner, R. (2003). Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas. Environmental Science & Technology, 37(15), 3261–3267. https://doi.org/10.1021/es020137k

    Article  CAS  Google Scholar 

  • Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., & Lohmann, U. (2015). Particulate matter, air quality and climate: Lessons learned and future needs. Atmospheric Chemistry and Physics, 15(14), 8217–8299. https://doi.org/10.5194/acp-15-8217-2015

    Article  CAS  Google Scholar 

  • Gaga, E. O., & Ari, A. (2011). Gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in an urban traffic site in Eskisehir, Turkey. Atmospheric Research, 99(2), 207–216. https://doi.org/10.1016/j.atmosres.2010.10.013

    Article  CAS  Google Scholar 

  • Gaga, E. O., & Arı, A. (2019). Gas-particle partitioning and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) at urban, suburban and tunnel atmospheres: Use of measured EC and OC in model calculations. Atmospheric Pollution Research, 10(1), 1–11. https://doi.org/10.1016/j.apr.2018.05.004

    Article  CAS  Google Scholar 

  • Garban, B., Blanchoud, H., Motelay-Massei, A., Chevreuil, M., & Ollivon, D. (2002). Atmospheric bulk deposition of PAHs onto France: Trends from urban to remote sites. Atmospheric Environment, 36(34), 5395–5403. https://doi.org/10.1016/S1352-2310(02)00414-4

    Article  CAS  Google Scholar 

  • Garrido, A., Jiménez-Guerrero, P., & Ratola, N. (2014). Levels, trends and health concerns of atmospheric PAHs in Europe. Atmospheric Environment, 99, 474–484.

    Article  CAS  Google Scholar 

  • Gocht, T. (2005). The four greek elements: Mass balance of polycyclic aromatic hydrocarbons (PAHs) in small catchments of rural areas. Eberhard Karls Universität Tübingen.

  • Gocht, T., Klemm, O., & Grathwohl, P. (2007). Long-term atmospheric bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in rural areas of Southern Germany. Atmospheric Environment, 41(6), 1315–1327.

    Article  CAS  Google Scholar 

  • Gune, M., Ma, W.-L., Sampath, S., Li, W., Li, Y.-F., Udayashankar, H., Balakrishna, K., & Zhang, Z. (2017). Occurrence of polycyclic aromatic hydrocarbons (PAHs) in air and soil surrounding a coal-fired thermal power plant in the south west coast of India. Environmental Science and Pollution Research, 26, 1–13. https://doi.org/10.1007/s11356-019-05380-y

    Article  CAS  Google Scholar 

  • Han, Y., Bandowe, B. A. M., Schneider, T., Pongpiachan, S., Ho, S. S. H., Wei, C., Wang, Q., Xing, L., & Wilcke, W. (2021). A 150-year record of black carbon (soot and char) and polycyclic aromatic compounds deposition in Lake Phayao, north Thailand. Environmental Pollution, 269, 116148. https://doi.org/10.1016/j.envpol.2020.116148PMID-33310199

    Article  CAS  Google Scholar 

  • He, Q., Zhang, L., Cui, Y., Cheng, M., Guo, L., Liu, M., & Chen, L. (2017). Particle dry deposition of polycyclic aromatic hydrocarbons and its risk assessment in a typical coal-polluted and basin city, northern China. Atmospheric Pollution Research, 8(6), 1081–1089. https://doi.org/10.1016/j.apr.2017.04.008

    Article  Google Scholar 

  • Hien, T. T., Kameda, T., Takenaka, N., & Bandow, H. (2007). Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam. Atmospheric Environment, 41(8), 1575–1586. https://doi.org/10.1016/j.atmosenv.2006.10.045

    Article  CAS  Google Scholar 

  • Hong, W.-J., Li, Y.-F., Li, W.-L., Jia, H., Minh, N. H., Sinha, R. K., Moon, H.-B., Nakata, H., Chi, K. H., & Kannan, K. (2020). Soil concentrations and soil-air exchange of polycyclic aromatic hydrocarbons in five Asian countries. Science of the Total Environment, 711, 135223. https://doi.org/10.1016/j.scitotenv.2019.135223

    Article  CAS  Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71–84. https://doi.org/10.1016/j.envpol.2004.04.015

    Article  CAS  Google Scholar 

  • Karaca, G. (2016). Spatial distribution of polycyclic aromatic hydrocarbon (PAH) concentrations in soils from Bursa, Turkey. Archives of Environmental Contamination and Toxicology, 70(2), 406–417.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  Google Scholar 

  • Kim, S.-K., Lee, D. S., Shim, W. J., Yim, U. H., & Shin, Y.-S. (2009). Interrelationship of pyrogenic polycyclic aromatic hydrocarbon (PAH) contamination in different environmental media. Sensors, 9(12), 9582–9602. https://doi.org/10.3390/s91209582

    Article  CAS  Google Scholar 

  • Klimkowicz-Pawlas, A., Smreczak, B., & Ukalska-Jaruga, A. (2017). The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure. Environmental Science and Pollution Research, 24(12), 10955–10965. https://doi.org/10.1007/s11356-016-6610-8

    Article  CAS  Google Scholar 

  • Kong, S., Li, X., Li, L., Yin, Y., Chen, K., Yuan, L., Zhang, Y., Shan, Y., & Ji, Y. (2015). Variation of polycyclic aromatic hydrocarbons in atmospheric PM2. 5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection. Science of the Total Environment, 520, 59–72. https://doi.org/10.1016/j.scitotenv.2015.03.001

    Article  CAS  Google Scholar 

  • Kozielska, B. (2018). Health hazards from polycyclic aromatic hydrocarbons bound to submicrometer particles in Gliwice (Poland). MATEC Web of Conferences, EDP Sciences, 247, 00034.

  • Kozielska, B., Rogula-Kozłowska, W., & Klejnowski, K. (2015). Selected organic compounds in fine particulate matter at the regional background, urban background and urban traffic points in Silesia (Poland). International Journal of Environmental Research, 9(2), 575–584.

  • Krauß, M., Wilcke, W., & Zech, W. (2000). Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: Depth distribution as indicator of different fate. Environmental Pollution, 110(1), 79–88. https://doi.org/10.1016/S0269-7491(99)00280-8

    Article  Google Scholar 

  • Kumar, A., Sankar, T. K., Sethi, S. S., & Ambade, B. (2020). Characteristics, toxicity, source identification and seasonal variation of atmospheric polycyclic aromatic hydrocarbons over East India. Environmental Science and Pollution Research, 27(1), 678–690. https://doi.org/10.1007/s11356-019-06882-5

    Article  CAS  Google Scholar 

  • Lin, Y., Qiu, X., Ma, Y., Ma, J., Zheng, M., & Shao, M. (2015). Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environmental Pollution, 196, 164–170. https://doi.org/10.1016/j.envpol.2014.10.005

    Article  CAS  Google Scholar 

  • Liu, G., Yu, L., Li, J., Liu, X., & Zhang, G. (2011). PAHs in soils and estimated air–soil exchange in the Pearl River Delta, south China. Environmental Monitoring and Assessment, 173(1–4), 861–870. https://doi.org/10.1007/s10661-010-1429-0

    Article  CAS  Google Scholar 

  • Liu, X., Zhao, D., Peng, L., Bai, H., Zhang, D., & Mu, L. (2019). Gas–particle partition and spatial characteristics of polycyclic aromatic hydrocarbons in ambient air of a prototype coking plant. Atmospheric Environment, 204, 32–42. https://doi.org/10.1016/j.atmosenv.2019.02.012

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., & Lohmann, R. (2015). Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 134, 52–59. https://doi.org/10.1016/j.chemosphere.2015.03.065

    Article  CAS  Google Scholar 

  • Lors, C., Damidot, D., Ponge, J.-F., & Périé, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution, 165, 11–17. https://doi.org/10.1016/j.envpol.2012.02.004

    Article  CAS  Google Scholar 

  • Luo, L., Lin, S., Huang, H., & Zhang, S. (2012). Relationships between aging of PAHs and soil properties. Environmental Pollution, 170, 177–182. https://doi.org/10.1016/j.envpol.2012.07.003

    Article  CAS  Google Scholar 

  • Ma, W.-L., Zhu, F.-J., Hu, P.-T., Qiao, L.-N., & Li, Y.-F. (2020). Gas/particle partitioning of PAHs based on equilibrium-state model and steady-state model. Science of the Total Environment, 706, 136029. https://doi.org/10.1016/j.scitotenv.2019.136029

    Article  CAS  Google Scholar 

  • Ma, Y.-G., Lei, Y. D., Xiao, H., Wania, F., & Wang, W.-H. (2010). Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25 C. Journal of Chemical & Engineering Data, 55(2), 819–825. https://doi.org/10.1021/je900477x

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B., Smreczak, B., & Klimkowicz-Pawlas, A. (2009). Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Science of the Total Environment, 407(12), 3746–3753. https://doi.org/10.1016/j.scitotenv.2009.01.010

    Article  CAS  Google Scholar 

  • Martellini, T., Giannoni, M., Lepri, L., Katsoyiannis, A., & Cincinelli, A. (2012). One year intensive PM2. 5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environmental Pollution, 164, 252–258. https://doi.org/10.1016/j.envpol.2011.12.040

    Article  CAS  Google Scholar 

  • Martin, H. (2000). Development of passive samplers for time-integrated deposition and groundwater monitoring: Adsorption cartridges and ceramic dosimeters. Eberhard Karls Universität Tübingen.

  • Mastral, A. M., & Callen, M. S. (2000). A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology, 34(15), 3051–3057. https://doi.org/10.1021/es001028d

    Article  CAS  Google Scholar 

  • Means, B. (1989). Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final), Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste.

  • Meierdierks, J. (2019) Soil-atmosphere exchange of PAHs: The determination of concentration gradients with passive samplers, Eberhard Karls Universität Tübingen.

  • Müller, J. (1984). Atmospheric residence time of carbonaceous particles and particulate PAH-compounds. Science of the Total Environment, 36, 339–346.

    Article  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132(1), 1–11. https://doi.org/10.1016/j.envpol.2004.04.003

    Article  CAS  Google Scholar 

  • Nam, J. J., Sweetman, A. J., & Jones, K. C. (2009). Polynuclear aromatic hydrocarbons (PAHs) in global background soils. Journal of Environmental Monitoring, 11(1), 45–48. https://doi.org/10.1039/B813841A

    Article  CAS  Google Scholar 

  • Nam, J. J., Thomas, G. O., Jaward, F. M., Steinnes, E., Gustafsson, O., & Jones, K. C. (2008). PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70(9), 1596–1602. https://doi.org/10.1016/j.chemosphere.2007.08.010

    Article  CAS  Google Scholar 

  • Nasrabadi, T., Ruegner, H., Schwientek, M., Ghadiri, A., Hashemi, S. H., & Grathwohl, P. (2021). Dilution of PAHs loadings of particulate matter in air, dust and rivers in urban areas: A comparative study (Tehran megacity, Iran and city of Tübingen, SW-Germany). Science of the Total Environment, 806, 151268. https://doi.org/10.1016/j.scitotenv.2021.151268.

    Article  CAS  Google Scholar 

  • Oliveira, M., Slezakova, K., Delerue-Matos, C., do Carmo Pereira, M., & Morais, S. (2016). Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children). Environmental Pollution, 208, 382–394. https://doi.org/10.1016/j.envpol.2015.10.004

    Article  CAS  Google Scholar 

  • Omar, N. Y. M., Abas, M. R. B., Ketuly, K. A., & Tahir, N. M. (2002). Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment, 36(2), 247–254. https://doi.org/10.1016/S1352-2310(01)00425-3

    Article  CAS  Google Scholar 

  • Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., & Bai, Y. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159(3), 802–808. https://doi.org/10.1016/j.envpol.2010.11.003

    Article  CAS  Google Scholar 

  • Peng, C., Ouyang, Z., Wang, M., Chen, W., Li, X., & Crittenden, J. C. (2013). Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environmental Pollution, 178, 426–432.

    Article  CAS  Google Scholar 

  • Pham, C. T., Tang, N., Toriba, A., & Hayakawa, K. (2015). Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in atmospheric particles and soil at a traffic site in Hanoi, Vietnam. Polycyclic Aromatic Compounds, 35(5), 355–371.

    Article  CAS  Google Scholar 

  • Qu, C., Albanese, S., Lima, A., Hope, D., Pond, P., Fortelli, A., Romano, N., Cerino, P., Pizzolante, A., & De Vivo, B. (2019). The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes. Environment International, 124, 89–97. https://doi.org/10.1016/j.envint.2018.12.031

    Article  CAS  Google Scholar 

  • Quezada-Maldonado, E. M., Sánchez-Pérez, Y., Chirino, Y. I., & García-Cuellar, C. M. (2021). Airborne Particulate Matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. Environmental Pollution. https://doi.org/10.1016/j.envpol.2021.117313

    Article  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Rogula-Kozłowska, W., Kozielska, B., Błaszczak, B. & Klejnowski, K. (2012). The mass distribution of particle-bound PAH among aerosol fractions: A case-study of an urban area in Poland. In Organic pollutants ten years after the Stockholm convention—Environmental and analytical update (pp. 163–190). InTech: Rijeka, Croatia.

  • Rogula-Kozłowska, W., Kozielska, B., & Klejnowski, K. (2013). Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bulletin of Environmental Contamination and Toxicology, 91(3), 349–355. https://doi.org/10.1007/s00128-013-1060-1

    Article  CAS  Google Scholar 

  • Rogula-Kozłowska, W., Kozielska, B., Majewski, G., Rogula-Kopiec, P., Mucha, W., & Kociszewska, K. (2018). Submicron particle-bound polycyclic aromatic hydrocarbons in the Polish teaching rooms: Concentrations, origin and health hazard. Journal of Environmental Sciences, 64, 235–244. https://doi.org/10.1016/j.jes.2017.06.022

    Article  CAS  Google Scholar 

  • Schwarz, K. (2010) Atmogenic pollutants as reactive tracers for identification and quantification of important transport processes in a karst area at the catchment scale, Universität Tübingen.

  • Schwarz, K., Gocht, T., & Grathwohl, P. (2011). Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems. Environmental Pollution, 159(1), 133–139. https://doi.org/10.1016/j.envpol.2010.09.026

    Article  CAS  Google Scholar 

  • Shannigrahi, A., Fukushima, T., & Ozaki, N. (2005). Comparison of different methods for measuring dry deposition fluxes of particulate matter and polycyclic aromatic hydrocarbons (PAHs) in the ambient air. Atmospheric Environment, 39(4), 653–662. https://doi.org/10.1016/j.atmosenv.2004.10.025

    Article  CAS  Google Scholar 

  • Shen, M., Xing, J., Ji, Q., Li, Z., Wang, Y., Zhao, H., Wang, Q., Wang, T., Yu, L., & Zhang, X. (2018). Declining pulmonary function in populations with long-term exposure to polycyclic aromatic hydrocarbons-enriched PM2. 5. Environmental Science & Technology, 52(11), 6610–6616.

    Article  CAS  Google Scholar 

  • Sheu, H.-L., Lee, W.-J., Lin, S. J., Fang, G.-C., Chang, H.-C., & You, W.-C. (1997). Particle-bound PAH content in ambient air. Environmental Pollution, 96(3), 369–382. https://doi.org/10.1016/S0269-7491(97)00044-4

    Article  CAS  Google Scholar 

  • Sicre, M., Marty, J., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment 1967, 21(10), 2247–2259. https://doi.org/10.1016/0004-6981(87)90356-8

    Article  CAS  Google Scholar 

  • Slezakova, K., Castro, D., Delerue-Matos, C., da Conceição Alvim-Ferraz, M., & do MoraisCarmo Pereira, S. M. (2013). Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmospheric Research, 127, 141–147. https://doi.org/10.1016/j.atmosres.2012.06.009

    Article  CAS  Google Scholar 

  • Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environmental Chemistry Letters, 5(4), 169–195. https://doi.org/10.1007/s10311-007-0095-0

    Article  CAS  Google Scholar 

  • Tang, L., Tang, X., Zhu, Y., Zheng, M., & Miao, Q. (2005). Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International, 31(6), 822–828. https://doi.org/10.1016/j.envint.2005.05.031

    Article  CAS  Google Scholar 

  • Tasdemir, Y., & Esen, F. (2007). Dry deposition fluxes and deposition velocities of PAHs at an urban site in Turkey. Atmospheric Environment, 41(6), 1288–1301.

    Article  CAS  Google Scholar 

  • Tiwari, M., Sahu, S., Rathod, T., Bhangare, R., Ajmal, P., & Kumar, A. V. (2020). Measurement of size-fractionated atmospheric particulate matter and associated polycyclic aromatic hydrocarbons in Mumbai, India, and their dry deposition fluxes. Air Quality, Atmosphere & Health, 13(8), 939–949. https://doi.org/10.1007/s11869-020-00849-z

    Article  CAS  Google Scholar 

  • Tobiszewski, M. (2014). Application of diagnostic ratios of PAHs to characterize the pollution emission sources. Proceedings of the 5th International Conference on Environmental Science and Technology. IPCBEE, 69, 41–44.

  • USEPA (1991). Risk assessment guidance for superfund, volume 1, human health evaluation manual (part B, development of risk‐based preliminary remediation goals). EPA/540/R-92/003.

  • Valdivia, A. E. L., Larico, J. A. R., Peña, J. S., & Wannaz, E. D. (2020). Health risk assessment of polycyclic aromatic hydrocarbons (PAHs) adsorbed in PM 2.5 and PM 10 in a region of Arequipa, Peru. Environmental Science and Pollution Research, 27(3), 3065–3075.

    Article  Google Scholar 

  • Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-Hayes, V., & Nathanail, P. C. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314. https://doi.org/10.1016/j.apgeochem.2014.09.013

    Article  CAS  Google Scholar 

  • Wang, C., Wang, X., Gong, P., & Yao, T. (2014). Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange. Environmental Pollution, 184, 138–144. https://doi.org/10.1016/j.envpol.2013.08.029

    Article  CAS  Google Scholar 

  • Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z., & Wang, Z. (2009). Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmospheric Chemistry and Physics, 9(22), 8869–8882. https://doi.org/10.5194/acp-9-8869-2009

    Article  CAS  Google Scholar 

  • Wang, Q., Dong, Z., Guo, Y., Yu, F., Zhang, Z., & Zhang, R. (2020). Characterization of PM 2.5-Bound polycyclic aromatic hydrocarbons at two central China cities: Seasonal variation, sources, and health risk assessment. Archives of Environmental Contamination and Toxicology, 78(1), 20–33. https://doi.org/10.1007/s00244-019-00671-4

    Article  CAS  Google Scholar 

  • Wang, Q., Liu, M., Li, Y., Liu, Y., Li, S., & Ge, R. (2016). Dry and wet deposition of polycyclic aromatic hydrocarbons and comparison with typical media in urban system of Shanghai, China. Atmospheric Environment, 144, 175–181. https://doi.org/10.1016/j.atmosenv.2016.08.079

    Article  CAS  Google Scholar 

  • Wang, R., Liu, G., Chou, C.-L., Liu, J., & Zhang, J. (2010). Environmental assessment of PAHs in soils around the Anhui Coal District, China. Archives of Environmental Contamination and Toxicology, 59(1), 62–70. https://doi.org/10.1007/s00244-009-9440-6

    Article  CAS  Google Scholar 

  • Wang, S., Ji, Y., Zhao, J., Lin, Y., & Lin, Z. (2020). Source apportionment and toxicity assessment of PM2. 5-bound PAHs in a typical iron-steel industry city in northeast China by PMF-ILCR. Science of the Total Environment, 713, 136428. https://doi.org/10.1016/j.scitotenv.2019.136428

    Article  CAS  Google Scholar 

  • Wang, W., Simonich, S. L. M., Wang, W., Giri, B., Zhao, J., Xue, M., Cao, J., Lu, X., & Tao, S. (2011). Atmospheric polycyclic aromatic hydrocarbon concentrations and gas/particle partitioning at background, rural village and urban sites in the North China Plain. Atmospheric Research, 99(2), 197–206. https://doi.org/10.1016/j.atmosres.2010.10.002

    Article  CAS  Google Scholar 

  • Wang, Y., Bao, M., Zhang, Y., Tan, F., Zhao, H., Zhang, Q., & Li, Q. (2020). Polycyclic aromatic hydrocarbons in the atmosphere and soils of Dalian, China: Source, urban-rural gradient, and air-soil exchange. Chemosphere, 244, 125518. https://doi.org/10.1016/j.chemosphere.2019.125518

    Article  CAS  Google Scholar 

  • Wick, A.F., Haus, N.W., Sukkariyah, B.F., Haering, K.C. & Daniels, W.L. (2011). Remediation of PAH-contaminated soils and sediments: a literature review. CSES Department, internal research document, 102.

  • Wilcke, W. (2000). Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science, 163(3), 229–248. https://doi.org/10.1002/1522-2624(200006)163:3%3c229::AID-JPLN229%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  • Wilcke, W. (2007). Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma, 141(3–4), 157–166. https://doi.org/10.1016/j.geoderma.2007.07.007

    Article  CAS  Google Scholar 

  • Wilcke, W., Krauss, M., Safronov, G., Fokin, A. D., & Kaupenjohann, M. (2005). Polycyclic aromatic hydrocarbons (PAHs) in soils of the Moscow Region—concentrations, temporal trends, and small-scale distribution. Journal of Environmental Quality, 34(5), 1581–1590. https://doi.org/10.2134/jeq2005.0005

    Article  CAS  Google Scholar 

  • Wu, J., Sha, C., Li, D., Shen, C., Tang, H., & Huang, S. (2021). Spatial and seasonal variation of polycyclic aromatic hydrocarbons (Pahs) deposition flux and sources in shanghai. https://doi.org/10.21203/rs.3.rs-902028/v1.

  • Wu, S., Tao, S., Xu, F., Dawson, R., Lan, T., Li, B., & Cao, J. (2005). Polycyclic aromatic hydrocarbons in dustfall in Tianjin, China. Science of the Total Environment, 345(1–3), 115–126. https://doi.org/10.1016/j.scitotenv.2004.11.003

    Article  CAS  Google Scholar 

  • Yamasaki, H., Kuwata, K., & Miyamoto, H. (1982). Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environmental Science & Technology, 16(4), 189–194.

    Article  CAS  Google Scholar 

  • Yang, X., Ren, D., Sun, W., Li, X., Huang, B., Chen, R., Lin, C., & Pan, X. (2015). Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: Distribution, possible sources, and cancer risks. Environmental Science and Pollution Research, 22(9), 6696–6712. https://doi.org/10.1007/s11356-014-3858-8

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.

    Article  CAS  Google Scholar 

  • Zhang, H., Luo, Y., Wong, M. H., Zhao, Q., & Zhang, G. L. (2006). Distributions and concentrations of PAHs in Hong Kong soils. Environmental Pollution, 141(1), 107–114. https://doi.org/10.1016/j.envpol.2005.08.031

    Article  CAS  Google Scholar 

  • Zhang, X.-X., Cheng, S.-P., Cheng-Jun, Z., & Shi-Lei, S. (2006). Microbial PAH-degradation in soil: Degradation pathways and contributing factors. Pedosphere, 16(5), 555–565.

    Article  CAS  Google Scholar 

  • Zhang, Y., Deng, S., Liu, Y., Shen, G., Li, X., Cao, J., Wang, X., Reid, B., & Tao, S. (2011). A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air. Environmental Pollution, 159(3), 694–699. https://doi.org/10.1016/j.envpol.2010.12.002

    Article  CAS  Google Scholar 

  • Zhong, Y., & Zhu, L. (2013). Distribution, input pathway and soil–air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. Science of the Total Environment, 444, 177–182. https://doi.org/10.1016/j.scitotenv.2012.11.091

    Article  CAS  Google Scholar 

Download references

Funding

Thanks for the support of China Scholarship Council- Eberhard Karls University Of Tübingen PhD Program to Jialin Liu.

Author information

Authors and Affiliations

Authors

Contributions

JL performed the preliminary data collection and analysis, and was a major contributor in wring the manuscript. JJ and PG reviewed and revised the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jialin Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jia, J. & Grathwohl, P. Dilution of concentrations of PAHs from atmospheric particles, bulk deposition to soil: a review. Environ Geochem Health 44, 4219–4234 (2022). https://doi.org/10.1007/s10653-022-01216-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01216-w

Keywords

Navigation