Skip to main content

Advertisement

Log in

Mercury contamination in the riparian ecosystem during the reservoir discharging regulated by a mega dam

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mercury (Hg) is extremely poisonous and can be absorbed through touch, inhalation, or consumption. In the living environment, Hg in contaminated sediment can be transferred into grass by the direct absorption through the roots or shoots. The intake of Hg due to Hg emissions may pose a threat to living bodies especially to human beings. The present study aims to provide a novel insight about total mercury (THg) and methyl mercury (MeHg) in a riparian grass (Cynodon dactylon (L).Pers) and sediments during the discharging phase (summertime at 145 m water level) in Three Gorges Reservoir (TGR-China); where C. dactylon is a dominant perennial herb in the riparian zone. Yet, the potential risk of Hg contamination in the riparian ecosystem is not thoroughly assessed in the dam regulated reservoir. This study was conducted in the riparian zones of the reservoir formed by a mega dam (Three Gorge Dam) which regulates the water levels during the summer and winter period in the TGR. Our results showed that riparian sediments were acting as a sink for THg and MeHg. Insignificant correlation of THg and MeHg was found between the amphiphyte C. dactylon and its surrounding sediments in the TGR. Bioconcentration factors values for MeHg were found higher than 1 in all study locations in the riparian zones in TGR, which could be due to action of certain bacteria/purely chemical-based methylation on inorganic form of Hg. Additionally, translocation factor indices also highlighted that the amphiphyte C. dactylon was MeHg accumulator in riparian zones. These results suggested that since riparian sediment was found acting as the sink for THg and MeHg during discharging phase, MeHg contamination in the amphiphyte C. dactylon in riparian zones was not caused by the riparian sediments but by other factors, for instance, the anthropogenic activities in the TGR. Finally, this study leads to conclude that amphiphyte C. dactylon can be used as biomonitoring agent for Hg pollution in the TGR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of the study will be available from the corresponding author upon the request.

References

  • Agency., U. E. P. (2001). Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Method 1630: US Environmental Protection Agency Washington, DC.

  • Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. (2013). Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles, 27(2), 410–421.

    Article  CAS  Google Scholar 

  • Anjum, R., Gao, J., Tang, Q., He, X., Zhang, X., Long, Y., & Wang, M. (2017). Linking sedimentary total organic carbon to 210Pbex chronology from Changshou Lake in the Three Gorges Reservoir Region, China. Chemosphere, 174, 243–252.

    Article  CAS  Google Scholar 

  • Aula, I., Braunschweiler, H., & Malin, I. (1995). The watershed flux of mercury examined with indicators in the Tucurui reservoir in Para, Brazil. Science of the Total Environment, 175(2), 97–107.

    Article  CAS  Google Scholar 

  • Bao, Y., Gao, P., & He, X. (2015). The water-level fluctuation zone of Three Gorges Reservoir—A unique geomorphological unit. Earth-Science Reviews, 150, 14–24.

    Article  Google Scholar 

  • Baya, A., & Van Heyst, B. (2010). Assessing the trends and effects of environmental parameters on the behaviour of mercury in the lower atmosphere over cropped land over four seasons. Atmospheric Chemistry and Physics, 10(17).

  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794.

    Article  CAS  Google Scholar 

  • Berzas, J. N., García, L. B., & Rodríguez, R. M. D. (2003). Distribution of mercury in the aquatic environment at Almadén, Spain. Environmental pollution (Barking, Essex: 1987), 122(2), 261–271.

  • Bigham, G. N., Murray, K. J., Masue-Slowey, Y., & Henry, E. A. (2017). Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. Integrated Environmental Assessment and Management, 13(2), 249–263.

    Article  CAS  Google Scholar 

  • Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Webster, J. (2020). Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of The Total Environment, 721, 137647.

  • Bing, H., Zhou, J., Wu, Y., Wang, X., Sun, H., & Li, R. (2016). Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environmental Pollution, 214, 485–496.

    Article  CAS  Google Scholar 

  • Bravo, A. G., Loizeau, J.-L., Ancey, L., Ungureanu, V. G., & Dominik, J. (2009). Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania. Environmental Science and Pollution Research, 16(1), 66–75.

    Article  Google Scholar 

  • Brazeau, M. L., Poulain, A. J., Paterson, A. M., Keller, W. B., Sanei, H., & Blais, J. M. (2013). Recent changes in mercury deposition and primary productivity inferred from sediments of lakes from the Hudson Bay Lowlands, Ontario, Canada. Environmental Pollution, 173, 52–60.

    Article  CAS  Google Scholar 

  • Bringmark, L. (1997). Accumulation of Mercury in Soil. Metal Ions in Biological Systems: Volume 34: Mercury and its Effects on Environment and Biology, 2(2.2), 161.

  • Cabrita, M. T., Duarte, B., Cesário, R., Mendes, R., Hintelmann, H., Eckey, K., & Canário, J. (2019). Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms. Science of the Total Environment, 650, 111–120.

    Article  CAS  Google Scholar 

  • Carrasco-Gil, S., Siebner, H., LeDuc, D. L., Webb, S. M., Millán, R., Andrews, J. C., & Hernández, L. E. (2013). Mercury Localization and Speciation in Plants Grown Hydroponically or in a Natural Environment. Environmental Science and Technology, 47(7), 3082–3090. https://doi.org/10.1021/es303310t

    Article  CAS  Google Scholar 

  • Chadwick, S. P., Babiarz, C. L., Hurley, J. P., & Armstrong, D. E. (2013). Importance of hypolimnetic cycling in aging of “new” mercury in a northern temperate lake. Science of the Total Environment, 448, 176–188.

    Article  CAS  Google Scholar 

  • Chattopadhyay, S., Fimmen, R. L., Yates, B. J., Lal, V., & Randall, P. (2012). Phytoremediation of mercury-and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). International Journal of Phytoremediation, 14(2), 142–161.

    Article  Google Scholar 

  • Cheng, Z., Wang, H.-S., Du, J., Sthiannopkao, S., Xing, G.-H., Kim, K.-W., & Wong, M.-H. (2013). Dietary exposure and risk assessment of mercury via total diet study in Cambodia. Chemosphere, 92(1), 143–149.

    Article  CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    Article  CAS  Google Scholar 

  • DalCorso, G., Manara, A., & Furini, A. (2013). An overview of heavy metal challenge in plants: From roots to shoots. Metallomics, 5(9), 1117–1132.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Han, Y.-J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., & Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57(1), 17–28.

    Article  Google Scholar 

  • Duran, R., Ranchou-Peyruse, M., Menuet, V., Monperrus, M., Bareille, G., Goñi, M., & Donard, O. (2008). Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay, France). Environmental Pollution, 156(3), 951–958.

    Article  CAS  Google Scholar 

  • Eckley, C., Luxton, T., McKernan, J., Goetz, J., & Goulet, J. (2015). Influence of reservoir water level fluctuations on sediment methylmercury concentrations downstream of the historical Black Butte mercury mine, OR. Applied Geochemistry, 61, 284–293.

    Article  CAS  Google Scholar 

  • Ericksen, J., Gustin, M., Schorran, D., Johnson, D., Lindberg, S., & Coleman, J. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37(12), 1613–1622.

    Article  CAS  Google Scholar 

  • Fay, L., & Gustin, M. S. (2007). Investigation of mercury accumulation in cattails growing in constructed wetland mesocosms. Wetlands, 27(4), 1056–1065.

    Article  Google Scholar 

  • Fitzgerald, W. F., Lamborg, C. H., & Hammerschmidt, C. R. (2007). Marine biogeochemical cycling of mercury. Chemical Reviews, 107(2), 641–662.

    Article  CAS  Google Scholar 

  • Feng, X. (2005). Mercury pollution in China—an overview Dynamics of Mercury Pollution on Regional and Global Scales: (pp. 657–678). Springer.

  • Feng, R., Wang, L., Yang, J., Zhao, P., Zhu, Y., Li, Y., Wu, Z. (2020). Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. Journal of Hazardous Materials, p. 123570.

  • Ghosh, M., & Singh, S. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133(2), 365–371.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., & Henry, E. A. (1991). Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution, 71(2–4), 131–169.

    Article  CAS  Google Scholar 

  • Gorski, P. R., Cleckner, L. B., Hurley, J. P., Sierszen, M. E., & Armstrong, D. E. (2003). Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. Science of the Total Environment, 304(1–3), 327–348.

    Article  CAS  Google Scholar 

  • Graham, A. M., Cameron-Burr, K. T., Hajic, H. A., Lee, C., Msekela, D., & Gilmour, C. C. (2017). Sulfurization of dissolved organic matter increases Hg–sulfide–dissolved organic matter bioavailability to a Hg-methylating bacterium. Environmental Science and Technology, 51(16), 9080–9088.

    Article  CAS  Google Scholar 

  • Hall, B., Louis, V. S., Rolfhus, K., Bodaly, R., Beaty, K., Paterson, M., & Cherewyk, K. P. (2005). Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems, 8(3), 248–266.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., & Fitzgerald, W. F. (2006). Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica Et Cosmochimica Acta, 70(4), 918–930.

    Article  CAS  Google Scholar 

  • Harris, R. C., Rudd, J. W., Amyot, M., Babiarz, C. L., Beaty, K. G., Blanchfield, P. J., & Graydon, J. A. (2007). Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences, 104(42), 16586–16591.

    Article  CAS  Google Scholar 

  • Hogan, L. S., Marschall, E., Folt, C., & Stein, R. A. (2007). How non-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. Journal of Great Lakes Research, 33(1), 46–61.

    Article  CAS  Google Scholar 

  • Horvat, M., Liang, L., & Bloom, N. S. (1993). Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: Part II. Water, Analytica Chimica Acta, 282(1), 153–168.

    Article  CAS  Google Scholar 

  • Horvat, M., Nolde, N., Fajon, V., Jereb, V., Logar, M., Lojen, S., & Faganeli, J. (2003). Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment, 304(1–3), 231–256.

    Article  CAS  Google Scholar 

  • Hylander, L. D., & Meili, M. (2003). 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions. Science of the Total Environment, 304(1–3), 13–27.

    Article  CAS  Google Scholar 

  • Ilgen, A. G., & Cygan, R. T. (2016). Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis. International Journal of Greenhouse Gas Control, 44, 166–174.

    Article  CAS  Google Scholar 

  • Jackson, A. K., Evers, D. C., Adams, E. M., Cristol, D. A., Eagles-Smith, C., Edmonds, S. T., & Tear, T. (2015). Songbirds as sentinels of mercury in terrestrial habitats of eastern North America. Ecotoxicology, 24(2), 453–467. https://doi.org/10.1007/s10646-014-1394-4

    Article  CAS  Google Scholar 

  • Kahn, L. (1988). Determination of total organic carbon in sediment (Lloyd Kahn method). Standard Operating Procedures.

  • Kamman, N. C., Chalmers, A., Clair, T. A., Major, A., Moore, R. B., Norton, S. A., & Shanley, J. B. (2005). Factors influencing mercury in freshwater surface sediments of northeastern North America. Ecotoxicology, 14(1–2), 101–111.

    Article  CAS  Google Scholar 

  • Kannan, K., Smith, R., Jr., Lee, R., Windom, H., Heitmuller, P., Macauley, J., & Summers, J. (1998). Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Archives of Environmental Contamination and Toxicology, 34(2), 109–118.

    Article  CAS  Google Scholar 

  • King, J. K., Kostka, J. E., Frischer, M. E., & Saunders, F. M. (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Applied and Environment Microbiology, 66(6), 2430–2437.

    Article  CAS  Google Scholar 

  • Lehnherr, I. (2014). Methylmercury biogeochemistry: A review with special reference to Arctic aquatic ecosystems. Environmental Reviews, 22(3), 229–243.

    Article  CAS  Google Scholar 

  • Lei, P., Zhong, H., Duan, D., & Pan, K. (2019). A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Science of the Total Environment, 680, 140–150.

    Article  CAS  Google Scholar 

  • Leopold, K., Foulkes, M., & Worsfold, P. (2010). Methods for the determination and speciation of mercury in natural waters—a review. Analytica Chimica Acta, 663(2), 127–138.

    Article  CAS  Google Scholar 

  • Li, F., Ma, C., & Zhang, P. (2020). Mercury deposition, climate change and anthropogenic activities: A review. Frontiers in Earth Science, 8, 316.

    Article  Google Scholar 

  • Li, H., & Zhang, Y. (2015). Analysis of characteristics of inflow and outflow runoff and sediment in Three Gorges Reservoir and its influential factors. Yangtze River, 46(13), e18.

  • Lindqvist, O., Johansson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., & Meili, M. (1991). Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55(1–2), xi–261.

    Article  CAS  Google Scholar 

  • Liu, J., Jiang, T., Wang, F., Zhang, J., Wang, D., Huang, R., & Wang, J. (2018). Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation. Environmental Pollution, 237, 1112–1123.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579–579.

    Article  CAS  Google Scholar 

  • Mailman, M., Stepnuk, L., Cicek, N., & Bodaly, R. D. (2006). Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review. Science of the Total Environment, 368(1), 224–235.

    Article  CAS  Google Scholar 

  • Martinez-Finley, E. J., & Aschner, M. (2014). Recent advances in mercury research. Current Environmental Health Reports, 1(2), 163–171.

    Article  CAS  Google Scholar 

  • Mason, R. P., Fitzgerald, W. F., & Morel, F. M. (1994). The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica Et Cosmochimica Acta, 58(15), 3191–3198.

    Article  CAS  Google Scholar 

  • Mason, R. P., & Sheu, G. R. (2002). Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4),4014–4041.

  • Mertens, J., Luyssaert, S., & Verheyen, K. (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution, 138(1), 1–4.

    Article  CAS  Google Scholar 

  • Mir, Y., Wu, S., Ma, M., Mangwandi, C., & Mirza, Z. A. (2020). Mercury and its form in a dammed reservoir ecosystem during the charging phase. Environmental Science and Pollution Research, pp. 1–15.

  • Monitoring, A. (2008). Technical Background Report to the Global Atmospheric Mercury Assessment, 2008. Global Mercury Assessment.

  • Nelson, P. F., Morrison, A. L., Malfroy, H. J., Cope, M., Lee, S., Hibberd, M. L., & McGregor, J. (2012). Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources. Atmospheric Environment, 62, 291–302.

    Article  CAS  Google Scholar 

  • Nicolette, T. W. (2017). Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary.

  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47(2), 116–140.

    Article  Google Scholar 

  • O’Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747–761.

    Article  CAS  Google Scholar 

  • Pacyna, E., & Pacyna, J. (2002). Global emission of mercury from anthropogenic sources in 1995. Water, Air, and Soil Pollution, 137(1–4), 149–165.

    Article  CAS  Google Scholar 

  • Pacyna, E. G., Pacyna, J., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., & Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44(20), 2487–2499.

    Article  CAS  Google Scholar 

  • Pacyna, J. M., & Pacyna, E. G. (2000). Atmospheric emissions of anthropogenic lead in Europe: improvements, updates, historical data and projections (Vol. 31): GKSS.

  • Paranjape, A. R., & Hall, B. D. (2017). Recent advances in the study of mercury methylation in aquatic systems. Facets, 2(1), 85–119.

    Article  Google Scholar 

  • Patra, M., & Sharma, A. (2000). Mercury toxicity in plants. The Botanical Review, 66(3), 379–422.

    Article  Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., & Streets, D. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry Physics, 10(13), 5951–5964.

    Article  CAS  Google Scholar 

  • Qin, C., Wang, Y., Peng, Y., & Wang, D. (2016). Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmospheric Environment, 142, 442–451.

    Article  CAS  Google Scholar 

  • Qiu, G., Feng, X., Li, P., Wang, S., Li, G., Shang, L., & Fu, X. (2008). Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. Journal of agricultural and food chemistry, 56(7), 2465–2468.

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319–331.

    Article  CAS  Google Scholar 

  • Rea, A., Lindberg, S., Scherbatskoy, T., & Keeler, G. J. (2002). Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water, Air, and Soil Pollution, 133(1–4), 49–67.

    Article  CAS  Google Scholar 

  • Regier, N., Larras, F., Bravo, A. G., Ungureanu, V.-G., Amouroux, D., & Cosio, C. (2013). Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: Accumulation in shoots from the water might involve copper transporters. Chemosphere, 90(2), 595–602.

    Article  CAS  Google Scholar 

  • Rezvani, M., & Zaefarian, F. (2011). Bioaccumulation and translocation factors of cadmium and lead in’Aeluropus littoralis’. Australian Journal of Agricultural Engineering, 2(4), 114.

    Google Scholar 

  • Shao, D., Kang, Y., Wu, S., & Wong, M. H. (2012). Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. Science of the Total Environment, 424, 331–336.

    Article  CAS  Google Scholar 

  • Sinclair, K. A., Xie, Q., & Mitchell, C. P. (2012). Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada. Environmental Pollution, 171, 207–215.

    Article  CAS  Google Scholar 

  • Sonke, J. E., Heimbürger, L.-E., & Dommergue, A. (2013). Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. Comptes Rendus Geoscience, 345(5–6), 213–224.

    Article  CAS  Google Scholar 

  • Stein, E. D., Cohen, Y., & Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology, 26(1), 1–43.

    Article  CAS  Google Scholar 

  • Streets, D. G., Zhang, Q., & Wu, Y. (2009). Projections of global mercury emissions in 2050. Environmental Science and Technology, 43(8), 2983–2988.

    Article  CAS  Google Scholar 

  • Sysalova, J., Kucera, J., Drtinova, B., Cervenka, R., Zverina, O., Komárek, J., & Kameník, J. (2017). Mercury species in formerly contaminated soils and released soil gases. Science of the Total Environment, 584, 1032–1039.

    Article  Google Scholar 

  • Takarina, N. D., & Pin, T. G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, 21(2), 4.

    Article  Google Scholar 

  • Thakare, M., Sarma, H., Datar, S., Roy, A., Pawar, P., Gupta, K., Prasad, R. (2021). Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology.

  • Tullos, D. (2009). Assessing the influence of environmental impact assessments on science and policy: An analysis of the Three Gorges Project. Journal of Environmental Management, 90, S208–S223.

    Article  Google Scholar 

  • Turpeinen, R. (2002). Interactions between metals, microbes and plants: bioremediation of arsenic and lead contaminated soils.

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293.

    Article  CAS  Google Scholar 

  • USEPA. (2007). SW-846 test method 7474: Mercury in sediment and tissues samplesby atomic fluorescence spectrometry. US Environmental Protection Agency.

  • Wang, D., Shi, X., & Wei, S. (2003). Accumulation and transformation of atmospheric mercury in soil. Science of the Total Environment, 304(1–3), 209–214.

    Article  CAS  Google Scholar 

  • Wang, J., Shaheen, S. M., Swertz, A.-C., Rennert, T., Feng, X., & Rinklebe, J. (2019). Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. Journal of Hazardous Materials, 371, 687–693.

    Article  CAS  Google Scholar 

  • Wang, X., & Jiang, Y. (2006). Studies on the Landscape Ecology Along Yangtze River in Three Gorges Reservoir Area (Chongqing Section). China Architecture and Building Press.

  • Wang, Y., Peng, Y., Wang, D., & Zhang, C. (2014). Wet deposition fluxes of total mercury and methylmercury in core urban areas, Chongqing, China. Atmospheric Environment, 92, 87–96.

    Article  CAS  Google Scholar 

  • Watras, C. J., & Huckabee, J. W. (1994). Mercury pollution integration and synthesis. CRC Press.

  • Wong, C. S., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2006). Sources and trends of environmental mercury emissions in Asia. Science of the Total Environment, 368(2–3), 649–662.

    Article  CAS  Google Scholar 

  • Wu, J., Huang, J., Han, X., Gao, X., He, F., Jiang, M., & Shen, Z. (2004). The three gorges dam: An ecological perspective. Frontiers in Ecology and the Environment, 2(5), 241–248.

    Article  Google Scholar 

  • Xu, X., Tan, Y., & Yang, G. (2013). Environmental impact assessments of the Three Gorges Project in China: Issues and interventions. Earth-Science Reviews, 124, 115–125.

    Article  Google Scholar 

  • Yadav, A., Chowdhary, P., Kaithwas, G., & Bharagava, R. N. (2017). Toxic metals in the environment: Threats on ecosystem and bioremediation approaches handbook of metal-microbe interactions and bioremediation (pp. 128–141). CRC Press.

  • Yan, H., Li, Q., Yuan, Z., Jin, S., & Jing, M. (2019). Research progress of mercury bioaccumulation in the aquatic food chain, china: A review. Bulletin of Environmental Contamination and Toxicology, 102(5), 612–620.

    Article  CAS  Google Scholar 

  • Ye, C., Li, S., Zhang, Y., & Zhang, Q. (2011). Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. Journal of Hazardous Materials, 191(1–3), 366–372.

    Article  CAS  Google Scholar 

  • Zhang, L., & Wong, M. H. (2007). Environmental mercury contamination in China: Sources and impacts. Environment International, 33(1), 108–121.

    Article  CAS  Google Scholar 

  • Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., & Ryjkov, A. (2021). Vegetation uptake of mercury and impacts on global cycling. Nature Reviews Earth & Environment, pp. 1–16.

  • Zhou, Z. S., Wang, S. J., & Yang, Z. M. (2008). Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere, 70(8), 1500–1509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. B060104). Yaseen Mir was supported by the CAS-TWAS President’s doctoral fellowship for this research work. We would like to acknowledge the assistance of Professor Ahmed Barhoum, Professor Bailian Li, Stefan Lewandowski for the correction of this article. Additionally, we would also like to acknowledge the assistance of Professor Severine Le Faucher for manuscript correction.

Funding

This work was supported by the National Natural Science Foundation of China (No. B060104). Yaseen Mir was supported by the CAS-TWAS President’s doctoral fellowship for this research work.

Author information

Authors and Affiliations

Authors

Contributions

YM is first author because he helped to design the experiment, process the data and wrote the article. Correspondent, ZAM, also helped to design the experiment, process the data and wrote the article. Others colleagues have helped at different stages. The conflict of interest shows that all of the authors have agreed to this article.

Corresponding author

Correspondence to Zakaria Ahmed Mirza.

Ethics declarations

Conflict of interest

Statement refer to said article; Mercury containment in the riparian ecosystem during the reservoir discharging regulated by a mega dam.

Animal research

The ethical statement is appropriate approved by the institutional Animal care and use committee of Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences (Approval ID: ZKCQYO168).

Consent to publish

The article titled “Mercury contamination in the riparian ecosystem during the reservoir discharging regulated by a mega dam” is presented. We used the Three Gorges Reservoir (TGR) to obtain the primary information about concentrations of THg and MeHg in Cynodon dactylon and sediment in TGR. The evaluation of THg and MeHg was an hour of need to assess the effect of Hg and its form MeHg on the biota in riparian zones of TGR. Therefore, this study was carried by understanding the interrelationship of THg and MeHg in C. dactylon and sediment in the TGR. During the discharging period, C. dactylon regrows in growing season and may result to transfer of Hg from sediment to amphiphyte C. dactylon. Therefore, we hypothesized that during the discharging phase of reservoir, Hg would be released from sediment to vegetation in the TGR. To test the hypothesis, we will ask: (1) what is the correlation between THg and MeHg in amphiphyte species C. dactylon; (2) what is the correlation between THg and MeHg in sediment; (3) What is the correlation between C. dactylon and sediment of THg and MeHg in the TGR. By addressing the questions, the present study provides us information about concentrations of THg and MeHg in roots and shoots of C. dactylon in relation to its surrounding sediment in the TGR. Our intention was also to obtain information about bioconcentration factor BAFs and translocation factor TF in terms of THg and MeHg in roots and shoots of amphiphyte C. dactylon and sediment in riparian zone of TGR. The keys words match the scope and thematic of your journal; which includes total mercury, methyl mercury, TGR, sediment, and grass. The first author is Yaseen Mir, and corresponding author is Dr. Zakaria.A.Mirza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Supplementary file2 (DOCX 48560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, Y., Wu, S., Ma, M. et al. Mercury contamination in the riparian ecosystem during the reservoir discharging regulated by a mega dam. Environ Geochem Health 44, 4405–4422 (2022). https://doi.org/10.1007/s10653-022-01205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01205-z

Keywords

Navigation