Aggarwal, G., Lippi, G., Lavie, C. J., Henry, B. M., & Sanchis-Gomar, F. (2020). Diabetes mellitus association with coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Journal of Diabetes, 12(11), 851–855. https://doi.org/10.1111/1753-0407.13091
CAS
Article
Google Scholar
Alexander, J., Tinkov, A., Strand, T. A., Alehagen, U., Skalny, A., & Aaseth, J. (2020). Early nutritional interventions with Zinc, Selenium and Vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients, 12(8), 2358. https://doi.org/10.3390/nu12082358
Article
Google Scholar
Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548. https://doi.org/10.1007/s10653-009-9255-4
CAS
Article
Google Scholar
Al-Salameh, A., Lanoix, J.-P., Bennis, Y., Andrejak, C., Brochot, E., Deschasse, G., et al. (2020). The association between body mass index class and coronavirus disease 2019 outcomes. International Journal of Obesity, 45(3), 700–705. https://doi.org/10.1038/s41366-020-00721-1
Article
Google Scholar
Barocas, J. A., So-Armah, K., Cheng, D. M., Lioznov, D., Baum, M., Gallagher, K., et al. (2019). Zinc deficiency and advanced liver fibrosis among HIV and hepatitis C co-infected anti-retroviral naïve persons with alcohol use in Russia. PLoS ONE, 14(6), e0218852. https://doi.org/10.1371/journal.pone.0218852
CAS
Article
Google Scholar
Calder, P. C. (2020). Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention & Health, 3(1), 74–92. https://doi.org/10.1136/bmjnph-2020-000085
Article
Google Scholar
Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4), 1181. https://doi.org/10.3390/nu12041181
Article
Google Scholar
Dinh, Q. T., Cui, Z., Huang, J., Tran, T. A. T., Wang, D., Yang, W., et al. (2018). Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112, 294–309. https://doi.org/10.1016/j.envint.2017.12.035
CAS
Article
Google Scholar
Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
CAS
Article
Google Scholar
Gashu, D., Nalivata, P. C., Amede, T., Ander, E. L., Bailey, E. H., Botoman, L., et al. (2021). The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature, 594(7861), 71–76. https://doi.org/10.1038/s41586-021-03559-3
Article
Google Scholar
Gonçalves, T. J. M., Gonçalves, S. E. A. B., Guarnieri, A., Risegato, R. C., Guimarães, M. P., de Freitas, D. C., et al. (2021). Association Between Low Zinc Levels and Severity of Acute Respiratory Distress Syndrome by New Coronavirus SARS-CoV-2. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition, 36(1), 186–191. https://doi.org/10.1002/ncp.10612
CAS
Article
Google Scholar
Heller, R. A., Sun, Q., Hackler, J., Seelig, J., Seibert, L., Cherkezov, A., et al. (2021). Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biology, 38, 101764. https://doi.org/10.1016/j.redox.2020.101764
CAS
Article
Google Scholar
Holman, N., Knighton, P., Kar, P., O’Keefe, J., Curley, M., Weaver, A., et al. (2020). Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study. The Lancet. Diabetes & Endocrinology, 8(10), 823–833. https://doi.org/10.1016/S2213-8587(20)30271-0
CAS
Article
Google Scholar
Im, J. H., Je, Y. S., Baek, J., Chung, M.-H., Kwon, H. Y., & Lee, J.-S. (2020). Nutritional status of patients with COVID-19. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 100, 390–393. https://doi.org/10.1016/j.ijid.2020.08.018
CAS
Article
Google Scholar
Johnson, C. C., Fordyce, F. M., & Rayman, M. P. (2010). Symposium on Geographical and geological influences on nutritio Factors controlling the distribution of selenium in the environment and their impact on health and nutrition Conference on ‘Over and undernutrition challenges and approaches. Proceedings of the Nutrition Society 69(1), 119–132.
Jothimani, D., Kailasam, E., Danielraj, S., Nallathambi, B., Ramachandran, H., Sekar, P., et al. (2020). COVID-19: Poor outcomes in patients with zinc deficiency. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 100, 343–349. https://doi.org/10.1016/j.ijid.2020.09.014
CAS
Article
Google Scholar
Lassale, C., Gaye, B., Hamer, M., Gale, C. R., & Batty, G. D. (2020). Ethnic disparities in hospitalisation for COVID-19 in England: The role of socioeconomic factors, mental health, and inflammatory and pro-inflammatory factors in a community-based cohort study. Brain, Behavior, and Immunity, 88, 44–49. https://doi.org/10.1016/j.bbi.2020.05.074
CAS
Article
Google Scholar
Liu, Q., Zhao, X., Ma, J., Mu, Y., Wang, Y., Yang, S., et al. (2021). Selenium (Se) plays a key role in the biological effects of some viruses: Implications for COVID-19. Environmental Research, 196, 110984. https://doi.org/10.1016/j.envres.2021.110984
CAS
Article
Google Scholar
Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., et al. (2020). Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12(7), 2098. https://doi.org/10.3390/nu12072098
Article
Google Scholar
Modern Epidemiology. (2020). https://www.ovid.com/product-details.4634.html. Accessed 30 Nov 2020.
Nai, A., Lorè, N. I., Pagani, A., De Lorenzo, R., Di Modica, S., Saliu, F., et al. (2021). Hepcidin levels predict Covid-19 severity and mortality in a cohort of hospitalized Italian patients. American Journal of Hematology, 96(1), E32–E35. https://doi.org/10.1002/ajh.26027
CAS
Article
Google Scholar
Park, S. K., Sack, C., Sirén, M. J., & Hu, H. (2020). Environmental cadmium and mortality from influenza and pneumonia in US Adults. Environmental Health Perspectives, 128(12), 127004. https://doi.org/10.1289/EHP7598
Article
Google Scholar
Pepper, I. L. (2013). The Soil Health-Human Health Nexus. Critical Reviews in Environmental Science and Technology, 43(24), 2617–2652. https://doi.org/10.1080/10643389.2012.694330
Article
Google Scholar
Perricone, C., Bartoloni, E., Bursi, R., Cafaro, G., Guidelli, G. M., Shoenfeld, Y., & Gerli, R. (2020). COVID-19 as part of the hyperferritinemic syndromes: The role of iron depletion therapy. Immunologic Research, 68(4), 213–224. https://doi.org/10.1007/s12026-020-09145-5
CAS
Article
Google Scholar
Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Medical Hypotheses, 142, 109814. https://doi.org/10.1016/j.mehy.2020.109814
CAS
Article
Google Scholar
Scientific Opinion on the substantiation of health claims related to copper and reduction of tiredness and fatigue (ID 272), maintenance of the normal function of the nervous system (ID 1723), maintenance of the normal function of the immune system (ID 1725) and contribution to normal energy-yielding metabolism (ID 1729) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (n.d.). EFSA Journal, (2011;9(4):2079). https://doi.org/10.2903/j.efsa.2011.2079
Scientific Opinion on the substantiation of health claims related to iron and formation of red blood cells and haemoglobin (ID 249, ID 1589), oxygen transport (ID 250, ID 254, ID 256), energy-yielding metabolism (ID 251, ID 1589), function of the immune system (ID 252, ID 259), cognitive function (ID 253) and cell division (ID 368) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (n.d.). EFSA Journal, (2009; 7(9):1215). https://doi.org/10.2903/j.efsa.2009.1215
Scientific Opinion on the substantiation of health claims related to zinc and function of the immune system (ID 291, 1757), DNA synthesis and cell division (ID 292, 1759), protection of DNA, proteins and lipids from oxidative damage (ID 294, 1758), maintenance of bone (ID 295, 1756), cognitive function (ID 296), fertility and reproduction (ID 297, 300), reproductive development (ID 298), muscle function (ID 299), metabolism of fatty acids (ID 302), maintenance of joints (ID 305), function of the heart and blood vessels (ID 306), prostate function (ID 307), thyroid function (ID 308), acid-base metabolism (ID 360), vitamin A metabolism (ID 361) and maintenance of vision (ID 361) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (n.d.). EFSA Journal, (2009; 7(9):1229). https://doi.org/10.2903/j.efsa.2009.1229
Scientific Opinion on the substantiation of health claims related to copper and protection of DNA, proteins and lipids from oxidative damage (ID 263, 1726), function of the immune system (ID 264), maintenance of connective tissues (ID 265, 271, 1722), energy-yielding metabolism (ID 266), function of the nervous system (ID 267), maintenance of skin and hair pigmentation (ID 268, 1724), iron transport (ID 269, 270, 1727), cholesterol metabolism (ID 369), and glucose metabolism (ID 369) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (n.d.). EFSA Journal, https://doi.org/10.2903/j.efsa.2009.1211
Scientific Opinion on the substantiation of health claims related to selenium and protection of DNA, proteins and lipids from oxidative damage (ID 277, 283, 286, 1289, 1290, 1291, 1293, 1751), function of the immune system (ID 278), thyroid function (ID 279, 282, 286, 1289, 1290, 1291, 1293), function of the heart and blood vessels (ID 280), prostate function (ID 284), cognitive function (ID 285) and spermatogenesis (ID 396) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (n.d.). EFSA Journal, (2009; 7(9):1220). https://doi.org/10.2903/j.efsa.2009.1220
Shakoor, H., Feehan, J., Al Dhaheri, A. S., Ali, H. I., Platat, C., Ismail, L. C., et al. (2021). Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas, 143, 1–9. https://doi.org/10.1016/j.maturitas.2020.08.003
CAS
Article
Google Scholar
Smith, D. B., Smith, S. M., & Horton, J. D. (2013). History and evaluation of national-scale geochemical data sets for the United States. Geoscience Frontiers, 4(2), 167–183. https://doi.org/10.1016/j.gsf.2012.07.002
CAS
Article
Google Scholar
Sonnweber, T., Boehm, A., Sahanic, S., Pizzini, A., Aichner, M., Sonnweber, B., et al. (2020). Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: A prospective observational cohort study. Respiratory Research, 21(1), 276. https://doi.org/10.1186/s12931-020-01546-2
CAS
Article
Google Scholar
Stata Bookstore | Spatial Autoregressive Models Reference Manual, Release 16. (2020). https://www.stata.com/bookstore/spatial-autoregressive-models-reference-manual/. Accessed 2 Dec 2020.
Steffan, J. J., Brevik, E. C., Burgess, L. C., & Cerdà, A. (2018). The effect of soil on human health: An overview. European Journal of Soil Science, 69(1), 159–171. https://doi.org/10.1111/ejss.12451
CAS
Article
Google Scholar
Taneri, P. E., Gómez-Ochoa, S. A., Llanaj, E., Raguindin, P. F., Rojas, L. Z., Roa-Díaz, Z. M., et al. (2020). Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. European Journal of Epidemiology, 35(8), 763–773. https://doi.org/10.1007/s10654-020-00678-5
CAS
Article
Google Scholar
Thomas, S., Patel, D., Bittel, B., Wolski, K., Wang, Q., Kumar, A., et al. (2021). Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Network Open, 4(2), e210369. https://doi.org/10.1001/jamanetworkopen.2021.0369
Article
Google Scholar
USDA ERS - Rural-Urban Continuum Codes. (2021). https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx. Accessed 11 April 2021.
Vogel-González, M., Talló-Parra, M., Herrera-Fernández, V., Pérez-Vilaró, G., Chillón, M., Nogués, X., et al. (2021). Low zinc levels at admission associates with poor clinical outcomes in SARS-CoV-2 Infection. Nutrients, 13(2), 562. https://doi.org/10.3390/nu13020562
Article
Google Scholar
Williamson, E. J., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E., et al. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature, 584(7821), 430–436. https://doi.org/10.1038/s41586-020-2521-4
CAS
Article
Google Scholar
Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2006). Immune-Enhancing Role of Vitamin C and Zinc and Effect on Clinical Conditions. Annals of Nutrition and Metabolism, 50(2), 85–94. https://doi.org/10.1159/000090495
CAS
Article
Google Scholar
Yao, J. S., Paguio, J. A., Dee, E. C., Tan, H. C., Moulick, A., Milazzo, C., et al. (2021). The Minimal Effect of Zinc on the Survival of Hospitalized Patients With COVID-19: An Observational Study. Chest, 159(1), 108–111. https://doi.org/10.1016/j.chest.2020.06.082
CAS
Article
Google Scholar
Yasui, Y., Yasui, H., Suzuki, K., Saitou, T., Yamamoto, Y., Ishizaka, T., et al. (2020). Analysis of the predictive factors for a critical illness of COVID-19 during treatment - relationship between serum zinc level and critical illness of COVID-19. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 100, 230–236. https://doi.org/10.1016/j.ijid.2020.09.008
CAS
Article
Google Scholar
Yehia, B. R., Winegar, A., Fogel, R., Fakih, M., Ottenbacher, A., Jesser, C., et al. (2020). Association of Race With Mortality Among Patients Hospitalized With Coronavirus Disease 2019 (COVID-19) at 92 US Hospitals. JAMA Network Open, 3(8), e2018039. https://doi.org/10.1001/jamanetworkopen.2020.18039
Article
Google Scholar
Yuan, L., Ma, Z. F., Zhang, M., Qin, L., Yin, X., & Han, F. (2022). Hair SE is a sensitive biomarker to monitor the effects of SE supplementation in elderly. Biological Trace Element Research, 200, 88–496. https://doi.org/10.1007/s12011-021-02674-6
CAS
Article
Google Scholar
Zhang, X., Wang, T., Li, S., Ye, C., Hou, J., Li, Q., et al. (2019). A Spatial Ecology Study of Keshan Disease and Hair Selenium. Biological Trace Element Research, 189(2), 370–378. https://doi.org/10.1007/s12011-018-1495-7
CAS
Article
Google Scholar
Zhang, J., Taylor, E. W., Bennett, K., Saad, R., & Rayman, M. P. (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China. The American Journal of Clinical Nutrition, 111(6), 1297–1299. https://doi.org/10.1093/ajcn/nqaa095
Article
Google Scholar
Zhou, H., Wang, T., Li, Q., & Li, D. (2018). Prevention of Keshan Disease by Selenium Supplementation: A Systematic Review and Meta-analysis. Biological Trace Element Research, 186(1), 98–105. https://doi.org/10.1007/s12011-018-1302-5
CAS
Article
Google Scholar
Zhou, C., Chen, Y., Ji, Y., He, X., & Xue, D. (2020a). Increased serum levels of hepcidin and ferritin are associated with severity of COVID 19. Medical Science Monitor, 26, e926178. https://doi.org/10.12659/MSM.926178
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020b). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet (London, England), 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
CAS
Article
Google Scholar