Skip to main content
Log in

Photocatalysis of aqueous PFOA by common catalysts of In2O3, Ga2O3, TiO2, CeO2 and CdS: influence factors and mechanistic insights

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Gallium oxide (Ga2O3), titanium dioxide (TiO2), cerium dioxide (CeO2), indium oxide (In2O3) and cadmium sulfide (CdS) were commonly used under UV light as photocatalysis system for the pollutants’ degradation. In this study, these five catalysts were applied for the photodegradation of perfluorooctanoic acid (PFOA), a well-known perfluoroalkyl substance (PFAS). As a result, the PFOA photodegradation performance was sequenced as: Ga2O3 > TiO2 > CeO2 > In2O3 > CdS. To further explain the photocatalysis mechanism, the effects of initial pH, photon energy and band gap were evaluated. The initial pH of 3 ± 0.2 hinders the catalytic reaction of CdS, resulting in low degradation of PFOA, while it has no significant effect on Ga2O3, TiO2, CeO2 and In2O3. In addition, quantum yield was sequenced as TiO2 > CeO2 > Ga2O3 > In2O3, which may not be the main factor determining the degradation effect. Notably, the band gap energy from large to narrow was as: Ga2O3 > TiO2 > CeO2 > In2O3 > CdS, which exactly matched their degradation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data and materials that support the findings of this study are openly available

References

  • Ahmed, M. B., Alam, M. M., Zhou, J. L., Xu, B., Johir, M. A. H., Karmakar, A. K., Rahman, M. S., Hossen, J., Hasan, A. T. M. K., & Moni, M. A. (2020a). Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water. Process Safety and Environmental Protection, 136, 1–14.

    Article  CAS  Google Scholar 

  • Ahmed, M. B., Johir, M. A. H., McLaughlan, R., Nguyen, L. N., Xu, B., & Nghiem, L. D. (2020b). Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook. The Science of the Total Environment, 748, 141251.

    Article  CAS  Google Scholar 

  • Bonvin, F., Omlin, J., Rutler, R., Schweizer, W. B., Alaimo, P. J., Strathmann, T. J., McNeill, K., & Kohn, T. (2013). Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environmental Science and Technology, 47, 6746–6755.

    Article  CAS  Google Scholar 

  • Cao, S., Zhou, N., Gao, F., Chen, H., & Jiang, F. (2017). All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 218, 600–610.

    Article  CAS  Google Scholar 

  • Chen, M. J., Lo, S. L., Lee, Y. C., & Huang, C. C. (2015). Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. Journal of Hazardous Materials, 288, 168–175.

    Article  CAS  Google Scholar 

  • Chen, M. J., Lo, S. L., Lee, Y. C., Kuo, J., & Wu, C. H. (2016). Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. Journal of Hazardous Materials, 303, 111–118.

    Article  CAS  Google Scholar 

  • Chen, X., Li, R., Pan, X., Huang, X., & Yi, Z. (2017). Fabrication of In2O3-Ag-Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation. Chemical Engineering Journal, 320, 644–652.

    Article  CAS  Google Scholar 

  • Chiavola, A., Di Marcantonio, C., Boni, M. R., Biagioli, S., Frugis, A., & Cecchini, G. (2020). Experimental investigation on the perfluorooctanoic and perfluorooctane sulfonic acids fate and behaviour in the activated sludge reactor. Process Safety and Environmental Protection, 134, 406–415.

    Article  CAS  Google Scholar 

  • Gatto, S., Sansotera, M., Persico, F., Gola, M., Pirola, C., Panzeri, W., Navarrini, W., & Bianchi, C. L. (2015). Surface fluorination on TiO2 catalyst induced by photodegradation of perfluorooctanoic acid. Catalysis Today, 241, 8–14.

    Article  CAS  Google Scholar 

  • Gomez-Ruiz, B., Ribao, P., Diban, N., Rivero, M. J., Ortiz, I., & Urtiaga, A. (2018). Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2 -rGO catalyst. Journal of Hazardous Materials, 344, 950–957.

    Article  CAS  Google Scholar 

  • Houtz, E., Wang, M., & Park, J. S. (2018). Identification and fate of aqueous film forming foam derived per- and polyfluoroalkyl substances in a wastewater treatment plant. Environmental Science and Technology, 52, 13212–13221.

    Article  CAS  Google Scholar 

  • Huang, B., Zhang, Z., Zhao, C., Cairang, L., Bai, J., Zhang, Y., Mu, X., Du, J., Wang, H., Pan, X., Zhou, J., & Xie, E. (2018). Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning. Sensors and Actuators B: Chemical, 255, 2248–2257.

    Article  CAS  Google Scholar 

  • Jain, R. B. (2021). Associations between concentrations of selected perfluoroalkyl acids and concentrations of blood cadmium, lead, and total mercury. Environmental Science and Pollution Research, 28, 26537–26544.

    Article  CAS  Google Scholar 

  • Li, M., Yu, Z., Liu, Q., Sun, L., & Huang, W. (2016). Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2. Chemical Engineering Journal, 286, 232–238.

    Article  CAS  Google Scholar 

  • Li, P., & Li, J. (2021). Perfluorooctanoic acid (PFOA) caused oxidative stress and metabolic disorders in lettuce (Lactuca sativa) root. Science of the Total Environment, 770, 144726.

    Article  CAS  Google Scholar 

  • Li, Z. M., Zhang, P. Y., Shao, T., & Li, X. Y. (2012). In2O3 nanoporous nanosphere: A highly efficient photocatalyst for decomposition of perfluorooctanoic acid. Applied Catalysis B: Environmental, 125, 350–357.

    Article  CAS  Google Scholar 

  • Li, Z., Zhang, P., Shao, T., Wang, J., Jin, L., & Li, X. (2013). Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). Journal of Hazardous Materials, 260, 40–46.

    Article  CAS  Google Scholar 

  • Liang, X., Cheng, J., Yang, C., & Yang, S. (2016). Factors influencing aqueous perfluorooctanoic acid (PFOA) photodecomposition by VUV irradiation in the presence of ferric ions. Chemical Engineering Journal, 298, 291–299.

    Article  CAS  Google Scholar 

  • Liu, X., Xu, B., Duan, X., Hao, Q., Wei, W., Wang, S., & Ni, B.-J. (2021). Facile preparation of hydrophilic In2O3 nanospheres and rods with improved performances for photocatalytic degradation of PFOA. Environmental Science: Nano, 8, 1010–1018.

    CAS  Google Scholar 

  • Magdalane, C. M., Kaviyarasu, K., Vijaya, J. J., Jayakumar, C., Maaza, M., & Jeyaraj, B. (2017). Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV–illuminated CeO2/CdO multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities. Journal of Photochemistry and Photobiology B: Biology, 169, 110–123.

    Article  Google Scholar 

  • Martin, J. W., et al. (2004). Analytical challenges hamper perfluoroalkyl research. Environmental Science and Technology, 38, 248A-255A.

    Article  CAS  Google Scholar 

  • Moreira, N. F. F., Narciso-da-Rocha, C., Polo-Lopez, M. I., Pastrana-Martinez, L. M., Faria, J. L., Manaia, C. M., Fernandez-Ibanez, P., Nunes, O. C., & Silva, A. M. T. (2018). Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Research, 135, 195–206.

    Article  CAS  Google Scholar 

  • Ojo, A. F., Peng, C., & Ng, J. C. (2021). Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. Journal of Hazardous Materials, 407, 124863.

    Article  CAS  Google Scholar 

  • Panchangam, S. C., Yellatur, C. S., Yang, J.-S., Loka, S. S., Lin, A. Y. C., & Vemula, V. (2018). Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA). Journal of Environmental Chemical Engineering, 6, 6359–6369.

    Article  CAS  Google Scholar 

  • Pu, S., Long, D., Liu, Z., Yang, F., & Zhu, J. (2018). Preparation of RGO-P25 nanocomposites for the photocatalytic degradation of ammonia in livestock farms. Catalysts, 8, 189.

    Article  Google Scholar 

  • Ramasamy, K., Dhavamani, S., Natesan, G., Sengodan, K., Sengottayan, S.-N., Tiwari, M., Shivendra, V. S., & Perumal, V. (2021). A potential role of green engineered TiO2 nanocatalyst towards enhanced photocatalytic and biomedical applications. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13530-4

    Article  Google Scholar 

  • Rappazzo, K. M., Coffman, E., & Hines, E. P. (2017). Exposure to perfluorinated alkyl substances and health outcomes in children: a systematic review of the epidemiologic literature. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph14070691

    Article  Google Scholar 

  • Schwarzenbach R. P., Gschwend P. M., Imboden D. M. (2005). Direct photolysis, Environmental Organic Chemistry, 2nd Edition, pp. 611–654.

  • Shao, M. W., Li, Q., Xie, B., Wu, J., & Qian, Y. T. (2003). The synthesis of CdS/ZnO and CdS/Pb3O4 composite materials via microwave irradiation. Materials Chemistry and Physics, 78, 288–291.

    Article  Google Scholar 

  • Shao, T., Zhang, P., Li, Z., & Jin, L. (2013). Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide. Chinese Journal of Catalysis, 34, 1551–1559.

    Article  CAS  Google Scholar 

  • Song, Z., Tang, H., Wang, N., & Zhu, L. (2013). Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. Journal of Hazardous Materials, 262, 332–338.

    Article  CAS  Google Scholar 

  • Veedu, S. N., Jose, S., Narendranath, S. B., Kurup, M. R. P., & Periyat, P. (2021). Visible light-driven photocatalytic degradation of methylene blue dye over bismuth-doped cerium oxide mesoporous nanoparticles. Environmental Science and Pollution Research, 28, 4147–4155.

    Article  CAS  Google Scholar 

  • Vuggili S. B., Kadiya K., Gaur U. K., Sharma M. (2020). Synthesis of graphitic carbon nitride/cadmium sulfide core-shell nanofibers for enhanced photocatalysis. Environmental Science and Pollution Research.

  • Xu, B., Ahmed, M. B., Zhou, J. L., & Altaee, A. (2020a). Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere, 243, 125366.

    Article  CAS  Google Scholar 

  • Xu, B., Ahmed, M. B., Zhou, J. L., Altaee, A., Wu, M., & Xu, G. (2017). Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors. Chemosphere, 189, 717–729.

    Article  CAS  Google Scholar 

  • Xu, B., Ahmed, M. B., Zhou, J. L., Altaee, A., Xu, G., & Wu, M. (2018). Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. Science of the Total Environment, 633, 546–559.

    Article  CAS  Google Scholar 

  • Xu, B., Liu, S., Zhou, J. L., Zheng, C., Weifeng, J., Chen, B., Zhang, T., & Qiu, W. (2021). PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. Journal of Hazardous Materials, 412, 125159.

    Article  CAS  Google Scholar 

  • Xu, B., Zhou, J. L., Altaee, A., Ahmed, M. B., Johir, M. A. H., Ren, J., & Li, X. (2020b). Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate. Chemosphere, 239, 124722.

    Article  CAS  Google Scholar 

  • Yasuda, M., Matsumoto, T., & Yamashita, T. (2018). Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides. Renewable and Sustainable Energy Reviews, 81, 1627–1635.

    Article  CAS  Google Scholar 

  • Zang, C., Yu, K., Hu, S., & Chen, F. (2018). Adsorption-depended Fenton-like reaction kinetics in CeO2-H2O2 system for salicylic acid degradation. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 553, 456–463.

    Article  CAS  Google Scholar 

  • Zhang, T., Li, Y., Zhang, Y., Feng, Q., Ning, J., Zhang, C., Zhang, J., & Hao, Y. (2021). Investigation of β-Ga2O3 thin films grown on epi-GaN/sapphire(0001) substrates by low pressure MOCVD. Journal of Alloys and Compounds, 859, 157810.

    Article  CAS  Google Scholar 

  • Zhou, P., Le, Z., Xie, Y., Fang, J., & Xu, J. (2017). Studies on facile synthesis and properties of mesoporous CdS/TiO2 composite for photocatalysis applications. Journal of Alloys and Compounds, 692, 170–177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like thank the China Scholarship Council (CSC) for the financial support (Grant No. 201606890028).

Author information

Authors and Affiliations

Authors

Contributions

CF performed the photocatalysis experiment and was responsible for writing the manuscript. BX and CZ designed the study and was leading in the writing of the manuscript. WQ and DZ performed all statistical analysis. All authors contributed to and approved the final manuscript.

Corresponding authors

Correspondence to Xiuru Xu or Wenhui Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to publication

All authors agreed on the decision to publish this manuscript. Participants’ consent for publication is not applicable.

Additional information

Publisher's Note

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1202500), National Natural Science Foundation of China (Grant No. 42077223), Shenzhen Science and Technology Innovation Committee (JCYJ20190809164201686), State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (No. 2017B030301012), and Leading Talents of Guangdong Province Program (Chunmiao Zheng).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Xu, X., Zheng, C. et al. Photocatalysis of aqueous PFOA by common catalysts of In2O3, Ga2O3, TiO2, CeO2 and CdS: influence factors and mechanistic insights. Environ Geochem Health 44, 2943–2953 (2022). https://doi.org/10.1007/s10653-021-01127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01127-2

Keywords

Navigation