Skip to main content

Advertisement

Log in

In vitro and in vivo assessment of a CLD sequestration strategy in Nitisol using contrasted carbonaceous materials

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Chlordecone (Kepone) (CLD) is a highly persistent pesticide formerly used in the French West Indies. High levels of this pesticide may be found in soils and constitute a subsequent source of contamination for outdoor-reared animals due to involuntary ingestion of consistent amounts of soil. In that context, carbonaceous materials may be used to amend soil to efficiently decrease the bioavailability of such organic pollutants. The present study aims to assess the efficiency of diverse amendments of a contaminated Guadeloupe nitisol using two physiologically based approaches. A set of 5 carbonaceous materials (ORBO, DARCO, Coco CO2, Oak P1.5, Sargasso biochar) was tested and used to amend Nitisol at 2% (mass basis). Bioaccessibility assessment was performed using the Ti-PBET assay (n = 4). The relative bioavailability part involved 24 piglets randomly distributed into 6 experimental groups (n = 4). All groups were exposed during 10 days to a contaminated soil, amended or not with carbon-based matrices. A significant decrease in relative bioaccessibility and CLD concentrations in liver were observed for all amended groups in comparison to the control group, with the exception of the biochar amended soil in the bioaccessibility assay (p < 0.05). Extent of this reduction varied from 22 to more than 82% depending on the carbonaceous matrix. This decrease was particularly important for the ORBO™ activated carbon for which bioaccessibility and relative bioavailability were found lower than 10% for both methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, MD, upon reasonable request.

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  Google Scholar 

  • ANSES, (2019). Exposition aux poussières sédimentées dans les environnements intérieurs (Avis de l’ANSES), Rapport d’expertise collective. ANSES, Maisons-Alfort, France.

  • Arsène, M.-A., Bilba, K., Savastano Junior, H., & Ghavami, K. (2013). Treatments of non-wood plant fibres used as reinforcement in composite materials. Materials Research, 16, 903–923.

    Article  Google Scholar 

  • BBodSchV, (1999). Bundes-bodenschutz- und altlastenverordnung. (No. 1554), BGBI.

  • Becker, G. H., Meyer, J., & Necheles, H. (1950). Fat absorption in young and old age. Gastroenterology, 14, 80–92. https://doi.org/10.1016/S0016-5085(50)80113-0

    Article  CAS  Google Scholar 

  • Bouveret, C., Rychen, G., Lerch, S., Jondreville, C., & Feidt, C. (2013). Relative bioavailability of tropical volcanic soil-bound Chlordecone in piglets. Journal of Agriculture and Food Chemistry, 61, 9269–9274. https://doi.org/10.1021/jf400697r

    Article  CAS  Google Scholar 

  • Cabidoche, Y.-M., Achard, R., Cattan, P., Clermont-Dauphin, C., Massat, F., & Sansoulet, J. (2009). Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue. Environmental Pollution, Special Issue Section: Ozone and Mediterranean Ecology: Plants, People, Problems, 157, 1697–1705. https://doi.org/10.1016/j.envpol.2008.12.015

    Article  CAS  Google Scholar 

  • Chevallier, M. L., Della-Negra, O., Chaussonnerie, S., Barbance, A., Muselet, D., Lagarde, F., Darii, E., Ugarte, E., Lescop, E., Fonknechten, N., Weissenbach, J., Woignier, T., Gallard, J.-F., Vuilleumier, S., Imfeld, G., Le Paslier, D., & Saaidi, P.-L. (2019). Natural chlordecone degradation revealed by numerous transformation products characterized in key french west indies environmental compartments. Environmental Science and Technology, 53, 6133–6143. https://doi.org/10.1021/acs.est.8b06305

    Article  CAS  Google Scholar 

  • Clostre, F., Cattan, P., Gaude, J.-M., Carles, C., Letourmy, P., & Lesueur-Jannoyer, M. (2015). Comparative fate of an organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants. Science of the Total Environment, 532, 292–300. https://doi.org/10.1016/j.scitotenv.2015.06.026

    Article  CAS  Google Scholar 

  • Coat, S., Monti, D., Legendre, P., Bouchon, C., Massat, F., & Lepoint, G. (2011). Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation. Environmental Pollution, 159, 1692–1701. https://doi.org/10.1016/j.envpol.2011.02.036

    Article  CAS  Google Scholar 

  • Collins, C. D., Mosquera-Vazquez, M., Gomez-Eyles, J. L., Mayer, P., Gouliarmou, V., & Blum, F. (2013). Is there sufficient ‘sink’ in current bioaccessibility determinations of organic pollutants in soils? Environmental Pollution, 181, 128–132. https://doi.org/10.1016/j.envpol.2013.05.053

    Article  CAS  Google Scholar 

  • Commission of the European Communities, (2008). Commission regulation (EC) No 839/2008 of 31 July 2008 amending regulation (EC) No 396/2005 of the European parliament and of the council as regards annexes II, III and IV on maximum residue levels of pesticides in or on certain products, regulation (EC).

  • Dallaire, R., Muckle, G., Rouget, F., Kadhel, P., Bataille, H., Guldner, L., Seurin, S., Chajès, V., Monfort, C., Boucher, O., Pierre Thomé, J., Jacobson, S. W., Multigner, L., & Cordier, S. (2012). Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environmental Research, 118, 79–85. https://doi.org/10.1016/j.envres.2012.07.006

    Article  CAS  Google Scholar 

  • Delannoy, M., Rychen, G., Fournier, A., Jondreville, C., & Feidt, C. (2014a). Effects of condensed organic matter on PCBs bioavailability in juvenile swine, an animal model for young children. Chemosphere, 104, 105–112. https://doi.org/10.1016/j.chemosphere.2013.10.072

    Article  CAS  Google Scholar 

  • Delannoy, M., Schwarz, J., Fournier, A., Rychen, G., & Feidt, C. (2014b). Effects of standard humic materials on relative bioavailability of NDL-PCBs in Juvenile Swine. PLoS One. https://doi.org/10.1371/journal.pone.0115759

    Article  Google Scholar 

  • Delannoy, M., Yehya, S., Techer, D., Razafitianamaharavo, A., Richard, A., Caria, G., Baroudi, M., Montargès-Pelletier, E., Rychen, G., & Feidt, C. (2018). Amendment of soil by biochars and activated carbons to reduce chlordecone bioavailability in piglets. Chemosphere, 210, 486–494. https://doi.org/10.1016/j.chemosphere.2018.05.181

    Article  CAS  Google Scholar 

  • Delannoy, M., Techer, D., Yehya, S., Razafitianamaharavo, A., Amutova, F., Fournier, A., Baroudi, M., Montarges-Pelletier, E., Rychen, G., & Feidt, C. (2019). Evaluation of two contrasted activated carbon-based sequestration strategies to reduce soil-bound chlordecone bioavailability in piglets. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-06494-z

    Article  Google Scholar 

  • DIN, (2017). DIN 19738: Bioaccessibility of organic and inorganic pollutants from contaminated soil material, soil quality. Deutsches Institut Fur Normung E.V.

  • Dromard, C. R., Bodiguel, X., Lemoine, S., Bouchon-Navaro, Y., Reynal, L., Thouard, E., & Bouchon, C. (2016). Assessment of the contamination of marine fauna by chlordecone in Guadeloupe and Martinique (Lesser Antilles). Environmental Science and Pollution Research, 23, 73–80. https://doi.org/10.1007/s11356-015-4732-z

    Article  CAS  Google Scholar 

  • Durimel, A., Altenor, S., Miranda-Quintana, R., Du Mesnil, P. C., Jauregui-Haza, U., Gadiou, R., & Gaspard, S. (2013). pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chemical Engineering Journal, 229, 239–249.

    Article  CAS  Google Scholar 

  • EPA, (2017). Validation assessment of in vitro arsenic bioaccessibility assay for predicting relative bioavailability of arsenic in soils and soil-like materials at superfund sites (No. OLEM 9355.4–29). Environmental Protection Agency, Washington, D.C.

  • Fernandes, P., Jannoyer-Lesueur, M., Soler, A., Achard, R., Woignier, T., (2010). Effects of clay microstructure and compost quality on chlordecone retention in volcanic tropical soils: Consequences on pesticide lability and plant contamination, In: 19th World congress of soil science, soil solutions for a changing world. Brisbane, Australia.

  • Flores, C. A., Hing, S. A., Wells, M. A., Koldovsky, O. (1989). Rates of triolein absorption in suckling and adult rats. American Journal of Physiology-Gastrointestinal and Liver Physiology 257:G823–G829.

  • French Ministry of Agriculture, (2015). DGAL/SDPAL/2015–266 (Instruction Technique No. N° NOR AGRG1507402N). French Ministry of Agriculture, Paris.

  • Holt, P. R., Balint, J. A. (1993). Effects of aging on intestinal lipid absorption. American Journal of Physiology-Gastrointestinal and Liver Physiology 264, G1–G6. https://doi.org/10.1152/ajpgi.1993.264.1.G1

  • Jurjanz, S., Fournier, A., Clostre, F., Godard, E., & Feidt, C. (2020). Control of poultry contamination in chlordecone-contaminated areas of the French West Indies. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08172-x

    Article  Google Scholar 

  • Jurjanz, S., Jondreville, C., Mahieu, M., Fournier, A., Archimède, H., Rychen, G., & Feidt, C. (2014). Relative bioavailability of soil-bound chlordecone in growing lambs. Environmental Geochemistry and Health, 36, 911–917. https://doi.org/10.1007/s10653-014-9608-5

    Article  CAS  Google Scholar 

  • Kademoglou, K., Giovanoulis, G., Palm-Cousins, A., Padilla-Sanchez, J. A., Magnér, J., de Wit, C. A., & Collins, C. D. (2018). In vitro inhalation bioaccessibility of phthalate esters and alternative plasticizers present in indoor dust using artificial lung fluids. Environmental Science & Technology Letters, 5, 329–334. https://doi.org/10.1021/acs.estlett.8b00113

    Article  CAS  Google Scholar 

  • Li, C., Sun, H., Juhasz, A. L., Cui, X., & Ma, L. Q. (2016). Predicting the relative bioavailability of DDT and its metabolites in historically contaminated soils using a tenax-improved physiologically based extraction test (TI-PBET). Environmental Science and Technology, 50, 1118–1125. https://doi.org/10.1021/acs.est.5b03891

    Article  CAS  Google Scholar 

  • Littell, R. C., Henry, P. R., Lewis, A. J., & Ammerman, C. B. (1997). Estimation of relative bioavailability of nutrients using SAS procedures. Journal of Animal Science, 75, 2672–2683.

    Article  CAS  Google Scholar 

  • Lomheim, L., Laquitaine, L., Rambinaising, S., Flick, R., Starostine, A., Jean-Marius, C., Edwards, E. A., & Gaspard, S. (2020). Evidence for extensive anaerobic dechlorination and transformation of the pesticide chlordecone (C10Cl10O) by indigenous microbes in microcosms from Guadeloupe soil. PLoS One, 15, e0231219. https://doi.org/10.1371/journal.pone.0231219

    Article  CAS  Google Scholar 

  • MEEM, (2017). Méthodologie nationale de gestion des sites et sols pollués, Bureau du Sol et du Sous-Sol. Ministère de l’Environnement, de l’Energie et de la Mer, Paris, France.

  • Multigner, L., Ndong, J. R., Giusti, A., Romana, M., Delacroix-Maillard, H., Cordier, S., Jégou, B., Thome, J. P., & Blanchet, P. (2010). Chlordecone exposure and risk of prostate cancer. JCO, 28, 3457–3462. https://doi.org/10.1200/JCO.2009.27.2153

    Article  CAS  Google Scholar 

  • Ranguin, R., Jean-Marius, C., Yacou, C., Gaspard, S., Feidt, C., Rychen, G., & Delannoy, M. (2020). Reduction of chlordecone environmental availability by soil amendment of biochars and activated carbons from lignocellulosic biomass. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-07366-2

    Article  Google Scholar 

  • Ranguin, R., Delannoy, M., Yacou, C., Jean-Marius, C., Feidt, C., Rychen, G., & Gaspard, S. (2021). Biochar and activated carbons preparation from invasive algae Sargassum Spp. for Chlordecone availability reduction in contaminated soils. Journal of Environmental Chemical Engineering, 9(4), 105280. https://doi.org/10.1016/j.jece.2021.105280

    Article  CAS  Google Scholar 

  • Saikat, S., Barnes, B., & Westwood, D. (2007). A review of laboratory results for bioaccessibility values of arsenic, lead and nickel in contaminated UK soils. Journal of Environmental Science and Health, Part A, 42, 1213–1221. https://doi.org/10.1080/10934520701435486

    Article  CAS  Google Scholar 

  • Tremolada, P., Guazzoni, N., Smillovich, L., Moia, F., & Comolli, R. (2012). The effect of the organic matter composition on pop accumulation in soil. Water, Air, and Soil Pollution, 223, 4539–4556. https://doi.org/10.1007/s11270-012-1216-3

    Article  CAS  Google Scholar 

  • UNEP, (2011). Listing of POPs in the Stockholm convention: Annex A (Elimination), Stockholm convention on persistent organic pollutants (POPs). United Nations Environment Programme.

  • U.S. EPA, (2011). Exposure factors handbook 2011 edition (Final) (No. EPA/600/R-09/052F). U.S. Environmental Protection Agency Washington, DC.

  • Wittsiepe, J., Erlenkämper, B., Welge, P., Hack, A., & Wilhelm, M. (2007). Bioavailability of PCDD/F from contaminated soil in young Goettingen minipigs. Chemosphere, 67, S355–S364. https://doi.org/10.1016/j.chemosphere.2006.05.129

    Article  CAS  Google Scholar 

  • Woignier, T., Clostre, F., Fernandes, P., Rangon, L., Soler, A., & Lesueur-Jannoyer, M. (2015). Compost addition reduces porosity and chlordecone transfer in soil microstructure. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-015-5111-5

    Article  Google Scholar 

  • Woignier, T., Fernandes, P., Jannoyer-Lesueur, M., & Soler, A. (2012). Sequestration of chlordecone in the porous structure of an andosol and effects of added organic matter: An alternative to decontamination. European Journal of Soil Science, 63, 717–723. https://doi.org/10.1111/j.1365-2389.2012.01471.x

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., Gron, C., Oomen, A., Reimer, K., Tack, K., & Van de Wiele, T. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030.

    CAS  Google Scholar 

  • Yehya, S., Delannoy, M., Fournier, A., Baroudi, M., Rychen, G., & Feidt, C. (2017). Activated carbon, a useful medium to bind chlordecone in soil and limit its transfer to growing goat kids. PLoS One, 12, e0179548. https://doi.org/10.1371/journal.pone.0179548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the French Ministry for Agriculture and Agence Nationnale de la Recherche for their financial support (ANR-16-CE21-0008). We thank the PASM platform to have provided the analytical equipment to perform the CLD quantitation of the bioaccessibility assays. We thank C. Soligot, M. Cizo, P. Hartmeyer, and H. Toussaint (Université de Lorraine, EA 3998) for their valuable technical support.

Funding

The authors are grateful to the French Ministry for Agriculture and Agence Nationnale de la Recherche for their financial support (ANR-16-CE21-0008).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MD, GR, CF, NEW, SG (supporting), Acquisition of data: NEW, MD, RR, CY, Analysis and interpretation of data: MD, RR, NEW, CY, Drafting of manuscript: MD, GR, CF, NEW, CY (supporting), RR (supporting), SG (supporting), Critical revision: CF, MD, GR, SG, CY, RR.

Corresponding author

Correspondence to Matthieu Delannoy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication. The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal research

The experimental protocol was approved by the Ethical Committee of Lorraine (Permit Number: EU0387, delivered by French Ministry of Higher Education, Research and Innovation). This study was carried out in strict accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the French Ministry of Agriculture for Animal Research (MAAR) and European Council Directive (European directive 2010/63/EU) in the recognized animal facility of the Bioavailability—Bioactivity platform (Bio-DA).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feidt, C., El Wanny, N., Ranguin, R. et al. In vitro and in vivo assessment of a CLD sequestration strategy in Nitisol using contrasted carbonaceous materials. Environ Geochem Health 44, 1911–1920 (2022). https://doi.org/10.1007/s10653-021-01108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01108-5

Keywords

Navigation