Skip to main content

Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure

Abstract

The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aarestrup, F. (2012). Sustainable farming: Get pigs off antibiotics. Nature, 486(7404), 465–466.

    CAS  Article  Google Scholar 

  2. Amano, J., Hase, R., Otsuka, Y., Tsuchimochi, T., Noguchi, Y., & Igarashi, S. (2019). Catheter-related bloodstream infection by Microbacterium paraoxydans in a pediatric patient with B-cell precursor acute lymphocytic leukemia: A case report and review of literature on Microbacterium bacteremia. Journal of Infection and Chemotherapy, 25(10), 806–810.

    CAS  Article  Google Scholar 

  3. Ashbolt, N. J., Amézquita, A., Backhaus, T., Borriello, Peter, Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Joakim Larsson, D. G., McEwen, S. A., Ryan, J. J., Schönfeld, J., Silley, P., Snape, J. R., Van den Eede, C., & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives, 121, 993–1001.

    Article  Google Scholar 

  4. Bai, Z., Ma, W., Ma, L., Velthof, G. L., Wei, Z., Havlík, P., Oenema, Oene, Lee, M. R. F., & Zhan, F. (2018). China’s livestock transition: Driving forces, impacts, and consequences. Science Advances, 4(7), eaar8534.

    CAS  Article  Google Scholar 

  5. Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42(1), 68–80.

    CAS  Article  Google Scholar 

  6. Besaury, L., Bodilis, J., Delgas, F., Andrade, S., De la Iglesia, R., Ouddane, B., & Quillet, L. (2013). Allowance and diversity of copper resistance genes cusA and copA in micro communities in relation to the impact of copper on Chilean marine segments. Marine Pollution Bulletin, 67(1–2), 16–25.

    CAS  Article  Google Scholar 

  7. Besaury, L., Pawlak, B., & Quillet, L. (2016). Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions. Environmental Science and Pollution Research, 23(5), 4013–4023.

    CAS  Article  Google Scholar 

  8. Bolan, N. S., Adriano, D. C., & Mahimairaja, S. (2004). Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Environmental Science & Technology, 34(3), 291–338.

    CAS  Article  Google Scholar 

  9. Cang, L., Wang, Y. J., Zhou, D. M., & Dong, Y. H. (2004). Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province China. Journal of Environmental Sciences, 16(3), 371–374.

    CAS  Google Scholar 

  10. Cheng, J. J., Ding, C. F., Li, X. G., Zhang, T. L., & Wang, X. X. (2016). Soil quality evaluation for navel orange production systems in central subtropical China. Soil and Tillage Research, 155, 225–232.

    Article  Google Scholar 

  11. Cummings, D. E., Archer, K. F., Arriola, D. J., Baker, P. A., Grace Faucett, K., Laroya, J. B., Pfeil, K. L., Ryan, C. R., Ryan, K. R. U., & Zuill, D. E. (2011). Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Environmental Science & Technology, 45(2), 447–454.

    CAS  Article  Google Scholar 

  12. Dai, M. X., Zhou, G. Q., Ng, H. Y., Zhang, J. Y., Wang, Y., Li, N., et al. (2019). Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd (II) stress. Journal Environmental Management, 250, 109519.

    CAS  Article  Google Scholar 

  13. Darmon, E., & Leach, D. R. F. (2014). Bacterial Genome Instability. Microbiology and Molecular Biology Reviews, 78(1), 1–39.

    Article  Google Scholar 

  14. Di Cesare, A., Eckert, E. M., D’Urso, S., Bertoni, R., Gillan, D. C., Wattiez, R., & Corno, G. (2016). Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Research, 94, 208–214.

    Article  CAS  Google Scholar 

  15. Shuai, D., Shen, J.-P., Hang-Wei, H., Wang, J.-T., Han, L.-L., Sheng, R., Wei, W.-X., Fang, Y.-T., Zhu, Y.-G., Zhang, L.-M., & He, Ji-Zheng. (2020). Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of The Total Environment, 712, 136418.

    Article  CAS  Google Scholar 

  16. Duan, M., Jie, G., Wang, X., Li, Y., Zhang, R., Ting, H., & Zhou, B. (2019). Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety, 180, 114–122.

    CAS  Article  Google Scholar 

  17. Fang, H., Wang, H. F., Cai, L., & Yu, Y. L. (2015). Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environmental Science & Technology, 49(2), 1095–1104.

    CAS  Article  Google Scholar 

  18. Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. A., & Dantas, G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098), 1107–1111.

    CAS  Article  Google Scholar 

  19. Gao, L., Hu, J., Zhang, X., Wei, L., Li, S., Miao, Z., & Chai, T. (2015). Application of swine manure on agricultural fields contributes to extended-spectrum β-lactamase-producing Escherichia coli spread in Tai’an China. Frontiers in Microbiology, 6, 313.

    Google Scholar 

  20. García, J., García-Galán, M. J., Day, J. W., Boopathy, R., White, J. R., Wallace, S., & Hunter, R. G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228.

    Article  CAS  Google Scholar 

  21. Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, S., Holley, M., & Stokes, H. W. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. Journal of Bacteriology, 190(14), 5095–5100.

    CAS  Article  Google Scholar 

  22. Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 9(6), 1269–1279.

    CAS  Article  Google Scholar 

  23. Gu, D. M., Guo, C. S., Hou, S., Lv, J. P., Zhang, Y., Yuan, S., & Zhao, Xin. (2019). Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China. Bulletin of Environmental Contamination Toxicology, 103, 590–596.

    CAS  Article  Google Scholar 

  24. Gudda, F. O., Waigi, M. G., Odinga, E. S., Yang, B., Carter, L., & Gao, Y. Z. (2020). Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. Environmental Pollution, 264, 114752.

    CAS  Article  Google Scholar 

  25. Guo, H., Jie, G., Wang, X., Jing, Y., Nasir, M., Peng, H., Zhang, R., Ting, Hu., Wang, Q., & Ma, J. (2019). Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. Environmental Pollution, 252, 1097–1105.

    CAS  Article  Google Scholar 

  26. Guo, T., Lou, C., Zhai, W., Tang, X., Hashmi, M. Z., Murtaza, R., Li, Y., Liu, X., & Jianming, X. (2018). Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Science of The Total Environment, 635, 995–1003.

    CAS  Article  Google Scholar 

  27. He, X., Yanbin, X., Chen, J., Ling, J., Yafei Li, L., Huang, X. Z., Zheng, L., & Xie, G. (2017). Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Research, 124, 39–48.

    CAS  Article  Google Scholar 

  28. Heuer, H., Schmitt, H., & Smalla, K. (2011). Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, 14(3), 236–243.

    CAS  Article  Google Scholar 

  29. Hou, J., Wan, W., Mao, D., Wang, C., Quanhua, M., Qin, S., & Luo, Y. (2015). Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environmental Science and Pollution Research, 22(6), 4545–4554.

    CAS  Article  Google Scholar 

  30. Hang-Wei, H., Wang, J.-T., Li, J., Li, J.-J., Ma, Y.-B., Chen, D., & He, J.-Z. (2016). Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environmental Microbiology, 18(11), 3896–3909.

    Article  CAS  Google Scholar 

  31. Hu, X. G., Zhou, Q. X., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992–2998.

    CAS  Article  Google Scholar 

  32. Huddleston, J. R. (2014). Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infection and Drug Resistance, 7, 167–176.

    Article  Google Scholar 

  33. Huyan, J., Tian, Z., Zhang, Y., Zhang, H., Shi, Y., Gillings, M. R., & Yang, M. (2020). Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Environment International, 140, 105816.

    CAS  Article  Google Scholar 

  34. Jang, H. M., Lee, J., Choi, S., Shin, J., Kan, E., & Mo Kim, Y. (2018). Response of antibiotic and heavy metal resistance genes to two different temperature sequences in anaerobic digestion of waste activated sludge. Bioresource Technology, 267, 303–310.

    CAS  Article  Google Scholar 

  35. Jechalke, S., Kopmann, C., Rosendahl, I., Groeneweg, J., Weichelt, V., Krögerrecklenfort, E., Brandes, N., Nordwig, M., Ding, G.-C., Siemens, J., Heuer, H., & Smalla, K. (2013). Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Applied and Environmental Microbiology, 79(5), 1704–1711.

    CAS  Article  Google Scholar 

  36. Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., & Wu, M. (2012). Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials, 235–236, 178–185.

    Article  CAS  Google Scholar 

  37. Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. J. (2017). Antibiotic-resistance genes in waste water. Trends in Microbiology, 26(3), 220–228.

    Article  CAS  Google Scholar 

  38. Kline, A., & Pinckney, J. L. (2016). Size-selective toxicity effects of the antimicrobial tylosin on estuarine phytoplankton communities. Environmental Pollution, 216, 806–810.

    CAS  Article  Google Scholar 

  39. Li, J., Xin, Z., Zhang, Y., Chen, J., Yan, J., Li, H., & Hangwei, H. (2017). Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Applied Soil Ecology, 121, 193–200.

    Article  Google Scholar 

  40. Li, J., Xu, Y., Wang, L. Q., & Li, F. D. (2019). Heavy metal occurrence and risk assessment in dairy feeds and manures from the typical intensive dairy farms in China. Environmental Science and Pollution Research, 26(7), 6348–6358.

    CAS  Article  Google Scholar 

  41. Li, Y., McCrory, D. F., Powell, J. M., Saam, H., & Jackson-Smith, D. (2005). A survey of selected heavy metal concentrations in Wisconsin dairy feeds. Journal of Dairy Science, 88(8), 2911–2922.

    CAS  Article  Google Scholar 

  42. Li, Y. W., Wu, X. L., Mo, C. H., Tai, L. P., Huang, X. P., & Xiang, L. (2011). Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. Journal of Agricultural and Food Chemistry, 59(13), 7268–7276.

    Article  CAS  Google Scholar 

  43. Liu, K., Sun, M., Ye, M., Chao, H., Zhao, Y., Xia, B., Jiao, W., Feng, Y., Zheng, X., Liu, M., Jiao, J., & Feng, Hu. (2019). Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates. Environmental Pollution, 244, 28–37.

    CAS  Article  Google Scholar 

  44. Liu, W. R., Zeng, D., She, L., Su, W. X., He, D. C., Wu, G. Y., & Ying, G. G. (2020). Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Science of The Total Environment, 734, 139023.

    CAS  Article  Google Scholar 

  45. Lu, X. M., Lu, P. Z., Chen, J. J., Zhang, H., & Fu, J. (2015). Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil. Environmental Science and Pollution Research, 22, 14727–14737.

    CAS  Article  Google Scholar 

  46. Luo, G., Li, B., Li, L. G., Zhang, T., & Angelidaki, I. (2017). Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis. Environmental Science & Technology, 51(7), 4069–4080.

    CAS  Article  Google Scholar 

  47. Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Lin, X., & Alvarez, P. J. J. (2010). Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science & Technology, 44(19), 7220–7225.

    Article  CAS  Google Scholar 

  48. Mao, D. Q., Luo, Y., Mathieu, J., Wang, Q., Feng, L., Mu, Q. H., Chunyan, F., & Alvarez, P. J. J. (2014). Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environmental Science & Technology, 48(1), 71–78.

    CAS  Article  Google Scholar 

  49. McKinney, C. W., Loftin, K. A., Meyer, M. T., Davis, J. G., & Pruden, A. (2010). tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental Science & Technology, 44(16), 6102–6109.

    CAS  Article  Google Scholar 

  50. Meng, L. W., Wang, J. C., Li, X. K., & Cui, F. G. (2020). Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. Ecotoxicology and Environmental Safety, 201, 110739.

    CAS  Article  Google Scholar 

  51. Mu, Q. H., Li, J., Sun, Y. X., Mao, D. Q., Wang, Q., & Luo, Y. (2015). Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research, 22(9), 6932–6940.

    CAS  Article  Google Scholar 

  52. Negreanu, Y., Pasternak, Z., Jurkevitch, E., & Cytryn, E. (2012). Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environmental Science & Technology, 46(9), 4800–4808.

    CAS  Article  Google Scholar 

  53. Nõlvak, H., Truu, M., Oopkaup, K., Kanger, K., Krustok, I., Nehrenheim, E., & Truu, J. (2018). Reduction of antibiotic resistome and integron-integrase genes in laboratory-scale photobioreactors treating municipal wastewater. Water Research, 142, 363–372.

    Article  CAS  Google Scholar 

  54. Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16, 964.

    Article  CAS  Google Scholar 

  55. Partridge, S. R., Tsafnat, G., Coiera, E., & Iredell, J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews, 33(4), 757–784.

    CAS  Article  Google Scholar 

  56. Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4), e00088-e117.

    CAS  Article  Google Scholar 

  57. Peng, F. J., Zhou, L. J., Ying, G. G., Liu, Y. S., & Zhao, J. L. (2014). Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin. Environmental Toxicology and Chemistry, 33(4), 776–783.

    CAS  Article  Google Scholar 

  58. Pérez, R. A., Albero, B., Férriz, M., & Tadeo, J. L. (2017). Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 146, 79–85.

    Article  CAS  Google Scholar 

  59. Pu, Q., Zhao, L. X., Li, Y. T., & Su, J. Q. (2020). Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases China. Journal of Hazardous Materials, 391, 122267.

    CAS  Article  Google Scholar 

  60. Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J., & Stepnowski, P. (2016). Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. Journal of Pharmaceutical and Biomedical Analysis, 127, 232–255.

    CAS  Article  Google Scholar 

  61. Qian, M., Huizhen, Wu., Jianmei Wang, H., Zhang, Z. Z., Zhang, Y., Lin, H., & Ma, J. (2016). Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Science of The Total Environment, 559, 174–181.

    CAS  Article  Google Scholar 

  62. Qiao, M., Ying, G. G., Singer, A. C., & Zhu, Y. G. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172.

    CAS  Article  Google Scholar 

  63. Rahman, M. M., Shan, J., Yang, P. P., Shang, X. X., Xia, Y. Q., & Yan, X. Y. (2018). Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution, 240, 368–377.

    CAS  Article  Google Scholar 

  64. Rajkumar, M., Ma, Y., & Freitas, H. (2013). Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. Journal Environmental Management, 128, 973–980.

    CAS  Article  Google Scholar 

  65. Roberto, A. A., Van Gray, J. B., Engohang-Ndong, J., & Leff, L. J. (2019). Distribution and co-occurrence of antibiotic and metal resistance genes in biofilms of an anthropogenically impacted stream. Science of the Total Environment, 688, 437–449.

    CAS  Article  Google Scholar 

  66. Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., & Gillan, D. C. (2014). Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 189, 143–151.

    CAS  Article  Google Scholar 

  67. Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.

    Article  Google Scholar 

  68. Soucy, S. M., Huang, J. L., & Gogarten, J. P. (2015). Horizontal gene transfer: Building the web of life. Nature Reviews Genetics, 16(8), 472–482.

    CAS  Article  Google Scholar 

  69. Hao-Chang, S., Pan, C.-G., Ying, G.-G., Zhao, J.-L., Zhou, L.-J., Liu, Y.-S., Tao, R., Zhang, R.-Q., & He, L.-Y. (2014). Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Science of The Total Environment, 490, 708–714.

    Article  CAS  Google Scholar 

  70. Su, J. Q., Wei, B., Xu, C. Y., Qiao, M., & Zhu, Y. G. (2014a). Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environment International, 65, 9–15.

    CAS  Article  Google Scholar 

  71. Tang, X., Lou, C., Wang, S., Yanhong, L., Liu, M., Hashmi, M. Z., Liang, X., Li, Z., Liao, Y., Qin, W., Fan, F., Jianming, Xu., & Brookes, P. C. (2015). Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biology & Biochemistry, 90, 179–187.

    CAS  Article  Google Scholar 

  72. Tien, Y.-C., Li, B., Zhang, T., Scott, A., Murray, R., Sabourin, L., Marti, R., & Topp, E. (2017). Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Science of The Total Environment, 581–582, 32–39.

    Article  CAS  Google Scholar 

  73. Vikesland, P. J., Pruden, A., Alvarez, P. J. J., Aga, D., Bürgmann, H., Li, X. D., et al. (2017). Towards a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environmental Science & Technology, 54(22), 13061–13069.

    Article  CAS  Google Scholar 

  74. Wang, J. H., Wang, L. J., Zhu, L. S., Wang, J., & Xing, B. S. (2020). Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1835438

    Article  Google Scholar 

  75. Wang, J. L., Liu, J. Z., Chen, Z. L., & Kuang, Y. B. (2005). Effects of enrofloxacin residues on the functions of soil microbes. Acta Ecologica Sinica, 25, 279–282.

    CAS  Google Scholar 

  76. Wang, L. J., Wang, J., Wang, J. H., Zhu, L. S., Yang, L. L., & Yang, R. (2019). Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Science of The Total Environment, 695, 133781.

    CAS  Article  Google Scholar 

  77. Wang, L. J., Wang, J. H., Wang, J., Zhu, L. S., Conkle, J. L., & Yang, R. (2020). Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. Journal of Hazardous Materials, 392, 122334.

    CAS  Article  Google Scholar 

  78. Wang, L., Xia, X., Zhang, W., Wang, J., Zhu, L., Wang, J., Wei, Z., & Ahmad, Z. (2019). Separate and joint eco-toxicological effects of sulfadimidine and copper on soil microbial biomasses and ammoxidation microorganisms abundances. Chemosphere, 228, 556–564.

    CAS  Article  Google Scholar 

  79. Wang, L. J., Zhao, X., Wang, J. H., Wang, J., Zhu, L. S., & Ge, W. L. (2019). Macrolide- and quinolone-resistant bacteria and resistance genes as indicators of antibiotic resistance gene contamination in farmland soil with manure application. Ecological Indicators, 106, 105456.

    CAS  Article  Google Scholar 

  80. Wellington, E. M. H., Boxall, A. B. A., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollings, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & PrysorWilliams, A. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155–165.

    CAS  Article  Google Scholar 

  81. Wu, H.-y, Shi, D.-y, Yang, D., Yin, J., Yang, Z.-w, Li, J.-w, Yang, W., & Jin, M. (2020). Putative environmental levels of levofloxacin facilitate the dissemination of antibiotic-resistant Escherichia coli via plasmid-mediated transformability. Ecotoxicology and Environmental Safety, 195, 110461.

    CAS  Article  Google Scholar 

  82. Wu, N., Qiao, M., Zhang, B., Cheng, W. D., & Zhu, Y. G. (2010). Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environmental Science & Technology, 44(18), 6933–6939.

    CAS  Article  Google Scholar 

  83. Xie, W. Y., Shen, Q., & Zhao, F. J. (2018). Antibiotics and antibiotic resistance from animal manures to soil: A review. European Journal of Soil Science, 69(1), 181–195.

    Article  Google Scholar 

  84. Xu, Y. G., Yu, W. T., Ma, Q., & Zhou, H. (2015). Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Science of the Total Environment, 530–531, 191–197.

    Article  CAS  Google Scholar 

  85. Yang, Q. E., Agouri, S. R., Tyrrell, J. M., & Walsh, T. R. (2018). Heavy metal resistance genes are associated with blaNDM-1- and blaCTX-M-15- Carrying Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 62(5), e02642-e2717.

    CAS  Article  Google Scholar 

  86. Yang, Q. X., Tian, T. T., Niu, T. Q., & Wang, P. L. (2017b). Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environmental Pollution, 229, 188–198.

    CAS  Article  Google Scholar 

  87. Yang, R., Xia, X., Wang, J., Zhu, L., Wang, J., Ahmad, Z., Yang, L., Mao, S., & Chen, Y. (2020). Dose and time-dependent response of single and combined artificial contamination of sulfamethazine and copper on soil enzymatic activities. Chemosphere, 250, 126161.

    CAS  Article  Google Scholar 

  88. Yang, X., Li, Q., Tang, Z., Zhang, W., Guanghui, Y., Shen, Q., & Zhao, F.-J. (2017). Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Management, 64, 333–339.

    CAS  Article  Google Scholar 

  89. Yao, X., Zhu, X., Pan, S., Fang, Y., Jiang, F., Phillips, G. O., & Xiaoyun, X. (2012). Antimicrobial activity of nobiletin and tangeretin against Pseudomonas. Food Chemistry, 132(4), 1883–1890.

    CAS  Article  Google Scholar 

  90. Yi, X. Z., Wang, M., & Zhou, Z. (2019). The potential impact of naturally produced antibiotics, environmental factors, and anthropogenic pressure on the occurrence of erm genes in urban soils. Environmental Pollution, 245, 282–289.

    CAS  Article  Google Scholar 

  91. You, Y. Q., & Silbergeld, E. K. (2014). Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion. Frontiers in Microbiology, 5, 284.

    Google Scholar 

  92. Zarei-Baygi, A., & Smith, A. L. (2021). Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresource Technology, 319, 124181.

    CAS  Article  Google Scholar 

  93. Zhang, B., Wang, M. M., Wang, B., Xin, Y. J., Gao, J. Q., & Liu, H. L. (2018a). The effects of bio-available copper on macrolide antibiotic resistance genes and mobile elements during tylosin fermentation dregs co-composting. Bioresource Technology, 251, 230–237.

    CAS  Article  Google Scholar 

  94. Zhang, J. Y., Chen, M. X., Sui, Q. W., Tong, J., Jiang, C., Lu, X. T., et al. (2016). Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 91, 339–349.

    CAS  Article  Google Scholar 

  95. Zhang, X. H., Tang, S., Wang, M., Sun, W. M., Xie, Y. W., Peng, H., et al. (2019). Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere, 217, 790–799.

    CAS  Article  Google Scholar 

  96. Zhang, Y. J., Hu, H. W., Gou, M., Wang, J. T., Chen, D. L., & He, J. Z. (2017). Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environmental Pollution, 231, 1621–1632.

    CAS  Article  Google Scholar 

  97. Zhang, Y. X., Lu, J., Wu, J., Wang, J. H., & Luo, Y. M. (2020). Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicology and Environmental Safety, 187, 109852.

    CAS  Article  Google Scholar 

  98. Zhang, Y., Gu, A. Z., Cen, T., Li, X., He, M., Li, D., & Chen, J. (2018). Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environmental Pollution, 237, 74–82.

    CAS  Article  Google Scholar 

  99. Zhao, L., Dong, Y. H., & Wang, H. (2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 408(5), 1069–1075.

    CAS  Article  Google Scholar 

  100. Zhao, X., Wang, J. H., Zhu, L. S., & Wang, J. (2019a). Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Science of the Total Environment, 654, 906–913.

    CAS  Article  Google Scholar 

  101. Zhao, X., Wang, J. H., Zhu, L. S., Ge, W. L., & Wang, J. (2017). Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Science of the Total Environment, 593–594, 10–17.

    Article  CAS  Google Scholar 

  102. Zhao, Yi., Cocerva, T., Cox, S., Tardif, S., Jian-Qiang, S., Zhu, Y.-G., & Brandt, K. K. (2019). Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Science of The Total Environment, 656, 512–520.

    CAS  Article  Google Scholar 

  103. Zhou, B., Wang, C., Zhao, Q., Wang, Y., Huo, M., Wang, J., & Wang, S. (2016). Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. Journal of Hazardous Materials, 320, 10–17.

    CAS  Article  Google Scholar 

  104. Zhou, L.-J., Ying, G.-G., Liu, S., Zhang, R.-Q., Lai, H.-J., Chen, Z.-F., & Pan, C.-G. (2013). Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Science of The Total Environment, 444, 183–195.

    CAS  Article  Google Scholar 

  105. Zhou, S. Y. D., Zhu, D., Giles, M., Daniell, T., Neilson, R., & Yang, X. R. (2020). Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environment International, 136, 105359.

    CAS  Article  Google Scholar 

  106. Zhou, X., Qiao, M., Wang, F. H., & Zhu, Y. G. (2016a). Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environmental Science and Pollution Research, 24(1), 701–710.

    Article  CAS  Google Scholar 

  107. Zhu, Y.-G., Johnson, T. A., Jian-Qiang, S., Qiao, M., Guo, G.-X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3435–3440.

    CAS  Article  Google Scholar 

  108. Zhu, Y.-G., Zhao, Yi., Li, B., Huang, C.-L., Zhang, S.-u, Shen, Y., Chen, Y.-S., Zhang, T., Gillings, M. R., & Jian-Qiang, S. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2(4), 16270.

    CAS  Article  Google Scholar 

  109. Zhuang, P., Zou, B., Li, N. Y., & Li, Z. A. (2009). Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environmental Geochemistry & Health, 31(6), 707–715.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 41671320], the Natural Science Foundation of Shandong Province, China [ZR2016JL029] and the Special Funds of Taishan Scholar of Shandong Province, China [grant numbers JQ201711].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Wang, J., Wang, L. et al. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-01102-x

Download citation

Keywords

  • Quinolone
  • Macrolide
  • Antibiotic resistance genes
  • Heavy metal resistance genes
  • Co-occurrence