Skip to main content
Log in

Soil and plant contamination by potentially toxic and emerging elements and the associated human health risk in some Egyptian environments

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The aim of this work was to assess the origins, mobility, bioavailability and potential health risks of V, Cr, Co, As, Se, Mo, Cd, Sn and Sb, which are not sufficiently studied in the terrestrial environment of Egypt. This has been carried out by employing a combination of chemical fractionation, plants uptake, mathematical modeling and risk assessment approaches on a wide range of soils and plants sampled from industrial, urban and agricultural locations across Egypt. The contents of As, Cd, Sn and Sb were elevated in the soils of some urban and industrial locations within Cairo, although their soil geo-accumulation (Igeo) indices remained ≤ 2, indicating only moderate contamination. Selenium showed moderate to heavy contamination levels (Igeo up to 4.7) in all sampling locations, and Sb was highly elevated (Igeo = 7.1; extreme contamination) in one industrial location. Therefore, Se was the most important contributor to the pollution load followed by Sb and Cd. Both principle component analysis (of total content) and geochemical fractionation (by sequential extraction) suggested that V, Cr and Co are mostly of geogenic origin, while Se and Sb contents appear to be highly influenced by anthropogenic inputs. The most mobile and bioavailable element was Cd with a large non-residual fraction in all soils (76% of total Cd). The bio-concentration factors of Cd in leafy and fruiting plants were 50 times larger than other elements (except Mo) indicating preferential systematic plant uptake of Cd. Risk assessment models showed an overall low noncarcinogenic and carcinogenic risks to the population of Egypt due to the studied elements with only a few anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achternbosch, M., Bräutigam, K., Hartlieb, N., Kupsch, C., Richers, U., Stemmermann, P. & Gleis, M. (2003). Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilisation. Karlsruhe: Forschungszentrum Karlsruhe GmbH.

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017a). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth-Science Reviews, 171, 621–645.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017b). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., Ok, Y. S., Bolan, N., & Rinklebe, J. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - a review. Environment International, 127, 819–847.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Stärk, H.-J., Wennrich, R., Levizou, E., Merbach, I., & Rinklebe, J. (2021). Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environment International, 146, 106233.

    Article  CAS  Google Scholar 

  • Atkinson, N. R., Bailey, E. H., Tye, A. M., Breward, N., & Young, S. D. (2011). Fractionation of lead in soil by isotopic dilution and sequential extraction. Environmental Chemistry, 8, 493–500.

    Article  CAS  Google Scholar 

  • Barraza, F., Schreck, E., Uzu, G., Lévêque, T., Zouiten, C., Boidot, M., & Maurice, L. (2021). Beyond cadmium accumulation: Distribution of other trace elements in soils and cacao beans in Ecuador. Environmental Research, 192, 110241.

    Article  CAS  Google Scholar 

  • Birch, G. F. (2017). Determination of sediment metal background concentrations and enrichment in marine environments – a critical review. Science of the Total Environment, 580, 813–831.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.

    Article  CAS  Google Scholar 

  • Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., Wang, X., Bressi, M., De Miranda, R. M., & Jiang, J. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89, 212–221.

    Article  Google Scholar 

  • Crompton, T. P. (2000). Battery reference book. Elsevier. https://doi.org/10.1016/B978-0-7506-4625-3.X5000-8

    Article  Google Scholar 

  • Cusack, M., Arrieta, J. M., & Duarte, C. M. (2020). Source apportionment and elemental composition of atmospheric total suspended particulates (TSP) over the Red Sea coast of Aaudi Arabia. Earth Systems and Environment., 4(4), 777–788.

    Article  Google Scholar 

  • Das, P., Samantaray, S., & Rout, G. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29–36.

    Article  CAS  Google Scholar 

  • Doabi, S. A., Karami, M., Afyuni, M., & Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province Iran. Ecotoxicology and Environmental Safety, 163, 153–164.

    Article  CAS  Google Scholar 

  • Ekoa Bessa, A. Z., Ngueutchoua, G., Kwewouo Janpou, A., Elamier, Y. A., Mbella Nguetnga, O.-A.N.N., Kankeu Kayou, U. R., Bisse, S. B., Ngo Mapuna, E. C., & Armstrong-Altrin, J. S. (2020). Heavy metal contamination and its ecological risks in the beach sediments along the atlantic ocean (limbe coastal fringes, cameroon). Earth Systems and Environment., 5(2), 433–444.

    Article  Google Scholar 

  • Elbana, T. A., Sparks, D. L., & Selim, H. M. (2014). Transport of tin and lead in soils: Miscible displacement experiments and second-order modeling. Soil Science Society of America Journal, 78, 701–712.

    Article  Google Scholar 

  • Elrys, A. S., Abdo, A. I., & Desoky, E.-S.M. (2018). Potato tubers contamination with nitrate under the influence of nitrogen fertilizers and spray with molybdenum and salicylic acid. Environmental Science and Pollution Research, 25, 7076–7089.

    Article  CAS  Google Scholar 

  • Emsley, J. (2011). Nature’s building blocks: An az guide to the elements. Oxford University Press.

    Google Scholar 

  • Ettler, V., Mihaljevič, M., Šebek, O., Valigurová, R., & Klementová, M. (2012). Differences in antimony and arsenic releases from lead smelter fly ash in soils. Chemie Der Erde-Geochemistry, 72, 15–22.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512.

    Article  CAS  Google Scholar 

  • Grybos, M., Davranche, M., Gruau, G., & Petitjean, P. (2007). Is trace metal release in wetland soils controlled by organic matter mobility or fe-oxyhydroxides reduction? Journal of Colloid and Interface Science, 314, 490–501.

    Article  CAS  Google Scholar 

  • Gu, K., Li, W., Han, J., Liu, W., Qin, W., & Cai, L. (2019). Arsenic removal from lead-zinc smelter ash by naoh-h2o2 leaching. Separation and Purification Technology, 209, 128–135.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P., Persson, I., Oromieh, A. G., Van Schaik, J. W., SjöStedt, C., & Kleja, D. B. (2014). Chromium (III) complexation to natural organic matter: Mechanisms and modeling. Environmental Science and Technology, 48, 1753–1761.

    Article  CAS  Google Scholar 

  • Hassan, S. K., El-Abssawy, A. A., Abdel-Maksoud, A. S., Abdou, M. H., & Khoder, M. I. (2013). Seasonal behaviours and weekdays/weekends differences in elemental composition of atmospheric aerosols in Cairo. Egypt. Aerosol and Air Quality Research, 13, 1552–1562.

    Article  CAS  Google Scholar 

  • Hassanien, M., & Horvath, A. (1999). Lead risk assessment for children in hungary by predicting their blood lead levels using US EPA integrated exposure uptake biokinetic model. Central European Journal of Public Health, 7, 155–159.

    CAS  Google Scholar 

  • Huang, J. H., Shetaya, W. H., & Osterwalder, S. (2020). Determination of (Bio)-available mercury in soils: A review. Environmental Pollution 263114323. https://doi.org/10.1016/j.envpol.2020.114323.

    Article  CAS  Google Scholar 

  • Inácio, M., Pereira, V., & Pinto, M. (2008). The soil geochemical atlas of portugal: Overview and applications. Journal of Geochemical Exploration, 98, 22–33.

    Article  Google Scholar 

  • Isinkaye, O. M. (2018). Distribution and multivariate pollution risks assessment of heavy metals and natural radionuclides around abandoned iron-ore mines in north central Nigeria. Earth Systems and Environment, 2, 331–343.

    Article  Google Scholar 

  • Islam, S., Ahmed, K., Habibullah Al, M., & Masunaga, S. (2015). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512–513, 94–102.

    Article  Google Scholar 

  • Joy, E. J. M., Broadley, M. R., Young, S. D., Black, C. R., Chilimba, A. D. C., Ander, E. L., Barlow, T. S., & Watts, M. J. (2015). Soil type influences crop mineral composition in Malawi. Science of the Total Environment, 505, 587–595.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. CRC Press Taylor and francis group.

    Google Scholar 

  • Kaiser, B. N., Gridley, K. L., Ngaire Brady, J., Phillips, T., & Tyerman, S. D. (2005). The role of molybdenum in agricultural plant production. Annals of Botany, 96, 745–754.

    Article  CAS  Google Scholar 

  • Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116, 368–372.

    Article  CAS  Google Scholar 

  • Korai, P. K., Sial, T. A., Pan, G., Hamada, A., Sikdar, A., Kumbhar, F., Channa, S. A., Ali, E. F., Zhang, J., Rinklebe, J., & Shaheen, S. M. (2021). Wheat and maize-derived water-washed and unwashed biochar improved the nutrients phytoavailability and the grain and straw yield of rice and wheat: A field trial for sustainable management of paddy soils. Journal of Environmental Management, 297, 113250.

    Article  CAS  Google Scholar 

  • Labib, M. W., Safar, Z. & Khalil, M. H. 2003. Lead emission inventory in the greater cairo area during the life time of caip. AWMA paper, 70137.

  • Lair, G., Graf, M., Zehetner, F., & Gerzabek, M. (2008). Distribution of cadmium among geochemical fractions in floodplain soils of progressing development. Environmental Pollution, 156, 207–214.

    Article  CAS  Google Scholar 

  • Li, B., He, H. L., Shi, S. Y., Ma, X. R., Wen, H. L., & Lu, C. F. (2002). Simultaneous determination of iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 17, 371–376.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., Van Der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Lyon, S. B. (2010). 3.11-corrosion of lead and its alloys. In B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, & H. Stott (Eds.), Shreir’s corrosion. Elsevier.

    Google Scholar 

  • Makhinova, A. F. & Makhinov, A. N. 2020. Role of humus substances in chemical soil pollution during deposit exploitation in priokhotye and priamurye. Environmental Research, 188, 109766.

  • Marchetti, S., Hassan, S. K., Shetaya, W. H., El-Mekawy, A., Mohamed, E. F., Mohammed, A. M., El-Abssawy, A. A., Bengalli, R., Colombo, A., & Gualtieri, M. (2019). Seasonal variation in the biological effects of PM2.5 from Greater Cairo. International Journal of Molecular Sciences, 20, 4970.

    Article  CAS  Google Scholar 

  • Marzouk, E. R., Chenery, S. R., & Young, S. D. (2013). Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange. Geochimica Et Cosmochimica Acta, 123, 1–16.

    Article  CAS  Google Scholar 

  • Mohamed, E. F., El-Hashemy, M. A., Abdel-Latif, N. M., & Shetaya, W. H. (2015). Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber. Journal of the Air and Waste Management Association, 65, 1413–1420.

    Article  CAS  Google Scholar 

  • Nabulo, G., Black, C., & Young, S. (2011). Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environmental Pollution, 159, 368–376.

    Article  CAS  Google Scholar 

  • Nakamaru, Y., & Uchida, S. (2008). Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behavior. Journal of Environmental Radioactivity, 99, 1003–1010.

    Article  CAS  Google Scholar 

  • Notten, M. J. M., Walraven, N., Beets, C. J., Vroon, P., Rozema, J., & Aerts, R. (2008). Investigating the origin of Pb pollution in a terrestrial soil–plant–snail food chain by means of pb isotope ratios. Applied Geochemistry, 23, 1581–1593.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van De Wiele, T., Wragg, J., Rompelberg, C. J. M., Sips, A. J. A. M., & Van Wijnen, J. H. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Qin, H.-B., Zhu, J.-M., & Su, H. (2012). Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of china. Chemosphere, 86, 626–633.

    Article  CAS  Google Scholar 

  • Ramírez, O., Sánchez De La Campa, A. M., Sánchez-Rodas, D., & De La Rosa, J. D. (2020). Hazardous trace elements in thoracic fraction of airborne particulate matter: Assessment of temporal variations, sources, and health risks in a megacity. Science of the Total Environment, 710, 136344.

    Article  Google Scholar 

  • Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  • Rieuwerts, J., & Farago, M. (1996). Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Applied Geochemistry, 11, 17–23.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the central Elbe river, Germany. Environment International, 126, 76–88.

    Article  CAS  Google Scholar 

  • Rinklebe, J., & Shaheen, S. M. (2014). Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe river, Germany. Water, Air, & Soil Pollution, 225, 2039.

    Article  Google Scholar 

  • Rodrigues, S., Henriques, B., Da Silva, E. F., Pereira, M., Duarte, A., & Römkens, P. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I–the role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81, 1549–1559.

    Article  CAS  Google Scholar 

  • Safar, Z., Labib, M. W., Lotfi, W. & Khalil, M. H. 2014. Characterization of contamination around the largest lead smelter in Egypt carried out through a cooperation program between USA and egypt. Field Actions Science Reports. The journal of field actions, 7.

  • Schwertmann, U., & Pfab, G. (1996). Structural vanadium and chromium in lateritic iron oxides: Genetic implications. Geochimica Et Cosmochimica Acta, 60, 4279–4283.

    Article  CAS  Google Scholar 

  • Shaheen, S. M. (2009). Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma, 153, 61–68.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Abdelrazek, M. A., Elthoth, M., Moghanm, F. S., Mohamed, R., Hamza, A., El-Habashi, N., Wang, J., & Rinklebe, J. (2019a). Potentially toxic elements in saltmarsh sediments and common reed (phragmites australis) of burullus coastal lagoon at north Nile delta, Egypt: A survey and risk assessment. Science of the Total Environment, 649, 1237–1249.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Alessi, D. S., Tack, F. M. G., Ok, Y. S., Kim, K.-H., Gustafsson, J. P., Sparks, D. L., & Rinklebe, J. (2019b). Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications- a review. Advances in Colloid and Interface Science, 265, 1–13.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Ali, R. A., Abowaly, M. E., Rabie, A.E.-M.A., El Abbasy, N. E., & Rinklebe, J. (2018). Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques. Journal of Geochemical Exploration, 191, 28–42.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Antoniadis, V., Kwon, E., Song, H., Wang, S.-L., Hseu, Z.-Y., & Rinklebe, J. (2020). Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 262, 114312.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Kwon, E. E., Biswas, J. K., Tack, F. M. G., Ok, Y. S., & Rinklebe, J. (2017). Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 180, 553–563.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2014). Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the central Elbe river, Germany. Geoderma, 228, 142–159.

    Article  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2018). Vanadium in thirteen different soil profiles originating from Germany and Egypt: Geochemical fractionation and potential mobilization. Applied Geochemistry, 88, 288–301.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2013). A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201, 43–56.

    Article  Google Scholar 

  • Shetaya, W., Marzouk, E., Mohamed, E., Elkassas, M., Bailey, E., & Young, S. (2018). Lead in Egyptian soils: Origin, reactivity and bioavailability measured by stable isotope dilution. Science of the Total Environment, 618, 460–468.

    Article  CAS  Google Scholar 

  • Shetaya, W. H., Huang, J.-H., Osterwalder, S., Mestrot, A., Bigalke, M., & Alewell, C. (2019a). Sorption kinetics of isotopically labelled divalent mercury (196Hg2+) in soil. Chemosphere, 221, 193–202.

    Article  CAS  Google Scholar 

  • Shetaya, W. H., Marzouk, E. R., Mohamed, E. F., Bailey, E. H., & Young, S. D. (2019b). Chemical and isotopic fractionation of lead in the surface soils of Egypt. Applied Geochemistry, 106, 7–16.

    Article  CAS  Google Scholar 

  • Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175, 896–914.

    Article  CAS  Google Scholar 

  • Taati, A., Salehi, M. H., Mohammadi, J., Mohajer, R., & Díez, S. (2020). Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environmental Research, 187, 109577.

    Article  CAS  Google Scholar 

  • Temple, P., Linzon, S., & Chai, B. (1977). Contamination of vegetation and soil by arsenic emissions from secondary lead smelters. Environmental Pollution, 1970(12), 311–320.

    Google Scholar 

  • Tóth, G., Hermann, T., Da Silva, M., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.

    Article  Google Scholar 

  • United-Nations 2018. World urbanization prospects. United Nations, Department of Economic and Social Affairs, Population Division, ST/ESA/SER.A/420.

  • United-Nations 2019. World population prospects: Highlights. Department of Economic Social Affairs, Population Division, ST/ESA/SER.A/423.

  • USEPA 1989. Risk assessment guidance for superfund: Volume I - human health evaluation manual (part A). Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., USA. EPA/540/1–89/002.

  • USEPA 2004. Risk assessment guidance for superfund: Volume I - human health evaluation manual (part E, supplemental guidance for dermal risk assessment). Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C., USA. EPA/540/R/99/005.

  • Van Der Voet, E. (2013). Environmental risks and challenges of anthropogenic metals flows and cycles. Report 3 of the global metal flows working group of the international resource panel of unep. France.

    Google Scholar 

  • Wichard, T., Mishra, B., Myneni, S. C., Bellenger, J.-P., & Kraepiel, A. M. (2009). Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nature Geoscience, 2, 625.

    Article  CAS  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158, 1169–1181.

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    Article  CAS  Google Scholar 

  • You, S.-J., Thakali, S., & Allen, H. E. (2006). Characteristics of soil organic matter (SOM) extracted using base with subsequent pH lowering and sequential pH extraction. Environment International, 32, 101–105.

    Article  CAS  Google Scholar 

  • Yuan, Y., Wu, Y., Ge, X., Nie, D., Wang, M., Zhou, H., & Chen, M. (2019). In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Science of the Total Environment, 678, 301–308.

    Article  CAS  Google Scholar 

  • Zang, F., Wang, H., Zhao, C., Nan, Z., Wang, S., Yang, J., & Li, N. (2021). Atmospheric wet deposition of trace elements to forest ecosystem of the Qilian mountains, northwest China. CATENA, 197, 104966.

    Article  CAS  Google Scholar 

  • Zeng, L., Zhou, F., Zhang, X., Qin, J., & Li, H. (2018). Distribution of heavy metals in soils and vegetables and health risk assessment in the vicinity of three contaminated sites in Guangdong province, China. Human and Ecological Risk Assessment: An International Journal, 24, 1901–1915.

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q., & Zheng, D. (2007). Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao zinc plant in China via consumption of vegetables. Science of the Total Environment, 383, 81–89.

    Article  CAS  Google Scholar 

  • Zvobgo, G., Lwalabawalwalaba, J., Sagonda, T., Mapodzeke, J. M., Muhammad, N., Shamsi, I. H., & Zhang, G. (2018). Phosphate alleviates arsenate toxicity by altering expression of phosphate transporters in the tolerant barley genotypes. Ecotoxicology and Environmental Safety, 147, 832–839.

    Article  CAS  Google Scholar 

Download references

Funding

The Egyptian Ministry of Higher Education and Scientific Research funded Waleed Hares Shetaya’s postdoctoral fellowship in the University of Nottingham. Sampling campaign and shipment of soils and plants were arranged and funded by Arish University. The laboratory work was performed in the UK and the cost was covered by the University of Nottingham own resources.

Author information

Authors and Affiliations

Authors

Contributions

 Waleed H. Shetaya was responsible for the research conceptualization, fellowship grant application, laboratory work & analysis and writing the manuscript’s original draft. Ezzat R. Marzouk provided further funds for soil and plants sampling and shipment. Elizabeth H. Bailey and Scott D. Young hosted, supervised and provided the necessary financial, logistical and administrative resources for the laboratory work & analysis. Investigation and data curation related to samples collection and pre-treatment were conducted by Waleed H. Shetaya, Elham F. Mohamed and Ezzat R. Marzouk. Decision on the appropriate methodology was made by Waleed H. Shetaya, Elizabeth H. Bailey, Scott D. Young and Ezzat R. Marzouk. Vasileios Antoniadis, Jörg Rinklebe and Sabry M. Shaheen validated the hypothesis, methodology and outcome of this work. All authors contributed to the formal and data analysis, and to the writing, reviewing and editing of the final manuscript’s version.

Corresponding authors

Correspondence to Waleed H. Shetaya, Sabry M. Shaheen or Ezzat R. Marzouk.

Ethics declarations

Conflicts of interest

The authors confirm that there is no conflict of interest.

Availability of data and material

Most of this articles research data have been included in Appendix A (Supplementary Materials). Any more required research data will be happily provided upon request.

Animal research

This study does not involve any animal subjects.

Consent to participate

This study does not involve any human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file(Appendix A) (DOCX 1415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetaya, W.H., Bailey, E.H., Young, S.D. et al. Soil and plant contamination by potentially toxic and emerging elements and the associated human health risk in some Egyptian environments. Environ Geochem Health 45, 359–379 (2023). https://doi.org/10.1007/s10653-021-01097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01097-5

Keywords

Navigation