Skip to main content

May a comprehensive mineralogical study of a jackstone calculus and some other human bladder stones unveil health and environmental implications?

This article has been updated

Abstract

This paper represents the first result of an active collaboration between the University of Sannio and the San Pio Hospital (Benevento, Italy), started in the 2018, that aims to a detailed mineralogical investigation of urinary stones of patients from Campania region. Herein, selected human bladder stones have been deeply characterized for clinical purposes and environmental biomonitoring, focusing on the importance to evaluate the concentration and distribution of undesired trace elements by means of microscopic techniques in the place of conventional wet chemical analyses. A rare bladder stone with a sea-urchin appearance, known as jackstone calculus, were also investigated (along with bladder stones made of uric acid and brushite) by means a comprehensive analytical approach, including Synchrotron X-ray Diffraction and Simultaneous Thermal Analyses. Main clinical assumptions were inferred according to the morpho-constitutional classification of bladder stones and information about patient’s medical history and lifestyle. In most of the analyzed uroliths, undesired trace elements such as copper, cadmium, lead, chromium, mercury and arsenic have been detected and generally attributable to environmental pollution or contaminated food. Simultaneous occurrence of selenium and mercury should denote a methylmercury detoxification process, probably leading to the formation of a very rare HgSe compound known as tiemannite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of data and material

All data are included in the present manuscript. Further information can be request to the corresponding author.

Change history

  • 13 October 2021

    In the published article, all the tables were published with incorrect layout. The tables have been updated with correct layout.

References

  1. Abboud, I. A. (2008). Mineralogy and chemistry of urinary stones: Patients from North Jordan. Environmental Geochemistry and Health, 30, 445–463. https://doi.org/10.1007/s10653-007-9128-7

    CAS  Article  Google Scholar 

  2. Abrol, N., & Kekre, N. S. (2014). Revisiting Randall’s plaque. African Journal of Urology, 20, 174–179. https://doi.org/10.1016/j.afju.2014.06.001

    Article  Google Scholar 

  3. Afaj, A. H., & Sultan, M. A. (2005). Mineralogical composition of the urinary stones from different provinces in Iraq. TheScientificWorldJOURNAL, 5, 24–38. https://doi.org/10.1100/tsw.2005.2

    CAS  Article  Google Scholar 

  4. Afzal, M., Iqbal, M., & Ahmad, H. (1992). Thermal analysis of renal stones. Journal of Thermal Analysis, 38, 1671–1682. https://doi.org/10.1007/BF01979363

    CAS  Article  Google Scholar 

  5. Ancharov, A. I., Potapov, S. S., Moiseenko, T. N., Feofilov, I. V., & Nizovskii, A. I. (2007). Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 575(1–2), 221–224.

    CAS  Article  Google Scholar 

  6. Ansari, M. S., & Gupta, N. P. (2003). Impact of socioeconomic status in etiology and management of urinary stone disease. Urologia Internationalis, 70(4), 255–261. https://doi.org/10.1159/000070130

    CAS  Article  Google Scholar 

  7. Aslin Shamema, A., Thanigai Arul, K., Senthil Kumar, R., & Kalkura, S. N. (2015). Physicochemical analysis of urinary stones from Dharmapuri district. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 134, 442–448. https://doi.org/10.1016/j.saa.2014.05.088

    CAS  Article  Google Scholar 

  8. Brogna, B., Flammia, F., Flammia, F. C., & Flammia, U. (2019). Jackstone calculus: A rare subtype of urinary stone with a sea-urchin appearance. International Journal of Nephrology and Kidney Failure, 4(5), 1–2. https://doi.org/10.16966/2380-5498.166

    Article  Google Scholar 

  9. Bao, Y., & Wei, Q. (2012). Water for preventing urinary stones. Cochrane database of systematic reviews. Cochrane Database Systematic Review, 2(2), CD004292. https://doi.org/10.1002/14651858.CD004292.pub3

    Article  Google Scholar 

  10. Basavaraj, D. R., Biyani, C. S., Browning, A. J., & Cartledge, J. J. (2007). The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones {A figure is presented}. EAU-EBU Update Series, 5, 126–136. https://doi.org/10.1016/j.eeus.2007.03.002

    Article  Google Scholar 

  11. Basiri, A., Taheri, M., & Taheri, F. (2012). What is the state of the stone analysis techniques in urolithiasis? Urology Journal, 9(2), 445–454. https://doi.org/10.22037/uj.v9i2.1469

    Article  Google Scholar 

  12. Bazin, D., Leroy, C., Tielens, F., Bonhomme, C., Bonhomme-Coury, L., Damay, F., et al. (2016). Hyperoxaluria is related to whewellite and hypercalciuria to weddellite: What happens when crystalline conversion occurs? Comptes Rendus Chimie, 19(11–12), 1492–1503.

    CAS  Article  Google Scholar 

  13. Berzina-Cimdina, L., & Borodajenko, N. (2012). Research of calcium phosphates using fourier transform infrared spectroscopy. In Infrared Spectroscopy - Materials Science, Engineering and Technology (pp. 123–148). Doi: https://doi.org/10.5772/36942

  14. Borghi, L., Meschi, T., Amato, F., Briganti, A., Novarini, A., & Giannini, A. (1996). Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: A 5-year randomized prospective study. The Journal of Urology, 155(3), 839–843.

    CAS  Article  Google Scholar 

  15. Brogna, B., Flammia, F., Flammia, F. C., & Flammia, U. (2018). A large jackstone calculus incidentally detected on ct examination: A case report with literature review. World Journal of Nephrology and Urology, 7(3–4), 85–87. https://doi.org/10.14740/wjnu372

    Article  Google Scholar 

  16. Chatterjee, P., Chakraborty, A., & Mukherjee, A. K. (2018). Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 200, 33–42. https://doi.org/10.1016/j.saa.2018.04.005

    CAS  Article  Google Scholar 

  17. Chaudhri, M. A., Watling, J., & Khan, F. A. (2007). Spatial distribution of major and trace elements in bladder and kidney stones. Journal of Radioanalytical and Nuclear Chemistry, 271(3), 713–720.

    CAS  Article  Google Scholar 

  18. Çiftçioğlu, N., Vejdani, K., Lee, O., Mathew, G., Aho, K. M., Kajander, E. O., et al. (2008). Association between Randall’s plaque and calcifying nanoparticles. International Journal of Nanomedicine, 3(1), 105.

    Article  Google Scholar 

  19. Cloutier, J., Villa, L., Traxer, O., & Daudon, M. (2015). Kidney stone analysis: “Give me your stone, I will tell you who you are!” World Journal of Urology, 33, 157–169. https://doi.org/10.1007/s00345-014-1444-9

    Article  Google Scholar 

  20. Coe, F. L. (1978). Hyperuricosuric calcium oxalate nephrolithiasis. Kidney International, 13(5), 418–426. https://doi.org/10.1038/ki.1978.60

    CAS  Article  Google Scholar 

  21. Conti, C., Brambilla, L., Colombo, C., Dellasega, D., Gatta, G. D., Realini, M., & Zerbi, G. (2010). Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy. Physical Chemistry Chemical Physics, 12, 14560–14566. https://doi.org/10.1039/c0cp00624f

    CAS  Article  Google Scholar 

  22. Curhan, G. C., Willett, W. C., Rimm, E. B., Speizer, F. E., & Stampfer, M. J. (1998). Body size and risk of kidney stones. Journal of the American Society of Nephrology, 9(9), 1645–1652.

    CAS  Article  Google Scholar 

  23. Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D., & Stampfer, M. J. (1997). Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Annals of Internal Medicine, 126(7), 497–504. https://doi.org/10.7326/0003-4819-126-7-199704010-00001

    CAS  Article  Google Scholar 

  24. Daudon, M., Dessombz, A., Frochot, V., Letavernier, E., Haymann, J. P., Jungers, P., & Bazin, D. (2016). Comprehensive morpho-constitutional analysis of urinary stones improves etiological diagnosis and therapeutic strategy of nephrolithiasis. Comptes Rendus Chimie, 19, 1470–1491. https://doi.org/10.1016/j.crci.2016.05.008

    CAS  Article  Google Scholar 

  25. Dosen, A., & Giese, R. F. (2011). Thermal decomposition of brushite, CaHPO4·2H2O to monetite CaHPO4 and the formation of an amorphous phase. American Mineralogist, 96, 368–373. https://doi.org/10.2138/am.2011.3544

    CAS  Article  Google Scholar 

  26. Dussol, B., Iovanna, C., Rotily, M., Morange, S., Leonetti, F., Dupuy, P., et al. (2008). A randomized trial of low-animal-protein or high-fiber diets for secondary prevention of calcium nephrolithiasis. Nephron Clinical Practice, 110(3), c185–c194.

    CAS  Article  Google Scholar 

  27. Evan, A. P., Lingeman, J. E., Coe, F. L., Shao, Y., Parks, J. H., Bledsoe, S. B., et al. (2005). Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney International, 67(2), 576–591. https://doi.org/10.1111/j.1523-1755.2005.67114.x

    CAS  Article  Google Scholar 

  28. Ferguson, J. E. (1990). The heavy elements: Chemistry, environmental impact and health effects. Pergamon Press.

    Google Scholar 

  29. Fiore, S., & Laviano, R. (1991). Brushite, hydroxylapatite, and taranakite from Apulian caves (southern Italy): New mineralogical data. American Mineralogist, 76(9–10), 1722–1727.

    CAS  Google Scholar 

  30. Frassetto, L., & Kohlstadt, I. (2011). Treatment and prevention of kidney stones: An update. American Family Physician, 84(11), 1234–1242.

    Google Scholar 

  31. Galván-Ruiz, M., Hernández, J., Baños, L., Noriega-Montes, J., & Rodríguez-García, M. E. (2009). Characterization of Calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. Journal of Materials in Civil Engineering, Do. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(694)

    Article  Google Scholar 

  32. Giannossi, M. L., & Summa, V. (2012). A Review of Pathological Biomineral Analysis Techniques and Classification Schemes. In A. Cumhur (Ed.), An Introduction to the Study of Mineralogy (pp. 123–146). Doi: https://doi.org/10.5772/34861

  33. Giannossi, M. L. (2013). Studio di biominerali patologici presenti nel corpo umano: caratteri composizionali ed influenza ambientale nel caso studio della Basilicata. Consiglio Regionale della Basilicata.

  34. Giannossi, M. L. (2010). La geologia in difesa della salute: Nuovi sbocchi professionali. Geologia Territorio Ambiente, 7, 3–9.

    Google Scholar 

  35. Giannossi, M. L., Mongelli, G., Tateo, F., & Summa, V. (2012). Mineralogical and morphological investigation of kidney stones of a Mediterranean region (Basilicata, Italy). Journal of X-Ray Science and Technology, 20(2), 175–186.

    CAS  Article  Google Scholar 

  36. Giannossi, M. L., Summa, V., & Mongelli, G. (2013). Trace element investigations in urinary stones: A preliminary pilot case in Basilicata (Southern Italy). Journal of Trace Elements in Medicine and Biology, 27, 91–97. https://doi.org/10.1016/j.jtemb.2012.09.004

    CAS  Article  Google Scholar 

  37. Gibson, R. I. (1974). Descriptive human pathological mineralogy. American Mineralogist: Journal of Earth and Planetary Materials, 59(11–12), 1177–1182.

    CAS  Google Scholar 

  38. Gomez, A., Narayan, M., Zhao, L., Jia, X., Bernal, R. A., Lopez-Moreno, M. L., & Peralta-Videa, J. R. (2021). Effects of nano-enabled agricultural strategies on food quality: Current knowledge and future research needs. Journal of Hazardous Materials, 401, 123385. https://doi.org/10.1016/j.jhazmat.2020.123385

    CAS  Article  Google Scholar 

  39. Goonewardena, S., Jayarajah, U., Kuruppu, S. N., & Fernando, M. H. (2021). Jackstone in the kidney: An unusual calculus. Case Reports in Urology. https://doi.org/10.1155/2021/8816547

    Article  Google Scholar 

  40. Gràcia-Garcia, S., Millán-Rodríguez, F., Rousaud-Barón, F., Montañés-Bermúdez, R., Angerri-Feu, O., Sánchez-Martín, F., et al. (2011). Why and how we must analyze urinary calculi. Actas Urológicas Españolas, 35(6), 354–362. https://doi.org/10.1016/j.acuroe.2011.01.005

    Article  Google Scholar 

  41. Grases, F., Costa-Bauzá, A., & García-Ferragut, L. (1998). Biopathological crystallization: a general view about the mechanisms of renal stone formation. Advances in Colloid and Interface Science, 74(1), 169–194. https://doi.org/10.1016/S0001-8686(97)00041-9

    CAS  Article  Google Scholar 

  42. Hammersley, A. P. (2016). FIT2D: A multi-purpose data reduction, analysis and visualization program. Journal of Applied Crystallography, 49, 646–652. https://doi.org/10.1107/S1600576716000455

    CAS  Article  Google Scholar 

  43. Hazen, R. M., Golden, J., Downs, R. T., Hystad, G., Grew, E. S., Azzolini, D., & Sverjensky, D. A. (2012). Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. American Mineralogist, 97(7), 1013–1042.

    CAS  Article  Google Scholar 

  44. Hill, C., & Forti, P. (1997). Cave minerals of the world (2nd ed.). National Speleological Society.

  45. Hirsch, A., Azuri, I., Addadi, L., Weiner, S., Yang, K., Curtarolo, S., & Kronik, L. (2014). Infrared absorption spectrum of brushite from first principles. Chemistry of Materials, 26(9), 2934–2942. https://doi.org/10.1021/cm500650t

    CAS  Article  Google Scholar 

  46. Hornberger, B., & Bollner, M. R. (2018). Kidney stones. Physician Assistant Clinics, 3(1), 37–54.

    Article  Google Scholar 

  47. Izatulina, A. R., Gurzhiy, V. V., Krzhizhanovskaya, M. G., Chukanov, N. V., & Panikorovskii, T. L. (2019). Thermal behavior and phase transition of uric acid and its dihydrate form, the common biominerals uricite and tinnunculite. Minerals, 9, 373. https://doi.org/10.3390/min9060373

    CAS  Article  Google Scholar 

  48. Izzo, F., Germinario, C., Grifa, C., Langella, A., & Mercurio, M. (2020). External reflectance FTIR dataset (4000–400 cm−1) for the identification of relevant mineralogical phases forming Cultural Heritage materials. Infrared Physics and Technology, 106, 103266. https://doi.org/10.1016/j.infrared.2020.103266

    CAS  Article  Google Scholar 

  49. Jiang, L., Zhang, R., Zhang, L., Zheng, R., & Zhong, M. (2021). Improving the regulatory health risk assessment of mercury-contaminated sites. Journal of Hazardous Materials, 402, 123493. https://doi.org/10.1016/j.jhazmat.2020.123493

    CAS  Article  Google Scholar 

  50. Jmai, S., Bagane, M., & Queneudec-T’kint, M. (2019). Physico-chemical, thermal, thermodynamic and kinetic characterization of a porous material (Di-calcium phosphate). Heat and Mass Transfer/waerme- Und Stoffuebertragung, 55, 3589–3602. https://doi.org/10.1007/s00231-019-02625-x

    CAS  Article  Google Scholar 

  51. Kanchana, G., Sundaramoorthi, P., & Jeyanthi, G. P. (2009). Bio-chemical analysis and FTIR-spectral studies of artificially removed renal stone mineral constituents. Journal of Minerals and Materials Characterization and Engineering, 8(2), 161–170. https://doi.org/10.4236/jmmce.2009.82014

    Article  Google Scholar 

  52. Keshavarzi, B., Ashayeri, N. Y., Moore, F., Irani, D., Asadi, S., Zarasvandi, A., & Salari, M. (2016). Mineralogical composition of urinary stones and their frequency in patients: Relationship to gender and age. Minerals, 6, 131. https://doi.org/10.3390/min6040131

    CAS  Article  Google Scholar 

  53. Keshavarzi, B., Yavarashayeri, N., Irani, D., Moore, F., Zarasvandi, A., & Salari, M. (2015). Trace elements in urinary stones: A preliminary investigation in Fars province, Iran. Environmental Geochemistry and Health, 37, 377–389. https://doi.org/10.1007/s10653-014-9654-z

    CAS  Article  Google Scholar 

  54. Klee, L. W., Brito, C. G., & Lingeman, J. E. (1991). The clinical implications of brushite calculi. Journal of Urology, 145(4), 715–718. https://doi.org/10.1016/S0022-5347(17)38432-X

    CAS  Article  Google Scholar 

  55. Kumar, V., Farell, G., Yu, S., Harrington, S., Fitzpatrick, L., Rzewuska, E., et al. (2006). Cell biology of pathologic renal calcification: Contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. Journal of Investigative Medicine, 54(7), 412–424.

    CAS  Article  Google Scholar 

  56. Kuta, J., Machát, J., Benová, D., Červenka, R., & Kořistková, T. (2012). Urinary calculi: Atypical source of information on mercury in human biomonitoring. Central European Journal of Chemistry, 10(5), 1475–1483. https://doi.org/10.2478/s11532-012-0063-9

    CAS  Article  Google Scholar 

  57. Kuta, J., Machát, J., Benová, D., Červenka, R., Zeman, J., & Martinec, P. (2013). Association of minor and trace elements with mineralogical constituents of urinary stones: A hard nut to crack in existing studies of urolithiasis. Environmental Geochemistry and Health, 35(4), 511–522.

    CAS  Article  Google Scholar 

  58. Lawson-Wood, K., & Robertson, I. (2016). Study of the Decomposition of Calcium Oxalate Monohydrate using a Hyphenated Thermogravimetric Analyser - FT-IR System (TG-IR). Seer Green, England: PerkinElmer, Inc. https://www.perkinelmer.com/lab-solutions/resources/docs/APP_Decomposition_Calcium Oxalate_Monohydrate(013078_01).pdf

  59. Le Bail, A., Duroy, H., & Fourquet, J. L. (1988). Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23(3), 447–452. https://doi.org/10.1016/0025-5408(88)90019-0

    Article  Google Scholar 

  60. Letavernier, E., Bazin, D., & Daudon, M. (2016). Randall’s plaque and kidney stones: Recent advances and future challenges. Comptes Rendus Chimie, 19, 1456–1460. https://doi.org/10.1016/j.crci.2014.12.005

    CAS  Article  Google Scholar 

  61. Li, X., Zhao, R., Liu, B., & Yu, Y. (2013). Gemstone spectral imaging dual-energy computed tomography: A novel technique to determine urinary stone composition. Urology, 81(4), 727–730.

    Article  Google Scholar 

  62. Lin, X., Zhao, J., Zhang, W., He, L., Wang, L., Li, H., et al. (2021). Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 409, 124923. https://doi.org/10.1016/j.jhazmat.2020.124923

    CAS  Article  Google Scholar 

  63. Liu, C.-C., Hsieh, T.-J., Wu, C.-F., Lee, C.-H., Tsai, Y.-C., Huang, T.-Y., et al. (2020). Interrelationship of environmental melamine exposure, biomarkers of oxidative stress and early kidney injury. Journal of Hazardous Materials, 396, 122726. https://doi.org/10.1016/j.jhazmat.2020.122726

    CAS  Article  Google Scholar 

  64. Lotti, P., Milani, S., Merlini, M., Joseph, B., Alabarse, F., & Lausi, A. (2020). Single-crystal diffraction at the high-pressure Indo-Italian beamline Xpress at Elettra, Trieste Lotti Paolo. Journal of Synchrotron Radiation, 27, 222–229. https://doi.org/10.1107/S1600577519015170

    CAS  Article  Google Scholar 

  65. Madore, F., Stampfer, M. J., Rimm, E. B., & Curhan, G. C. (1998). Nephrolithiasis and risk of hypertension. American Journal of Hypertension, 11(1), 46–53. https://doi.org/10.1016/s0895-7061(97)00371-3

    CAS  Article  Google Scholar 

  66. Mandel, S., & Tas, A. C. (2010). Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5 °C. Materials Science and Engineering C, 30, 245–254. https://doi.org/10.1016/j.msec.2009.10.009

    CAS  Article  Google Scholar 

  67. mindat.org. (n.d.-b). https://www.mindat.org/min-793.html

  68. mindat.org. (n.d.-a). https://www.mindat.org/min-4276.html

  69. Moran, M. E. (2014). Urolithiasis: A Comprehensive History. (Springer Nature, Ed.) (1st ed.). Springer.

  70. Moser, R., Zaccarini, F., Alber, T., & Kerbl, R. (2020). First finding of tiemannite, HgSe, in human bladder stones: An electron microprobe study. Micron, 138, 102928.

    CAS  Article  Google Scholar 

  71. Mukherjee, A. K. (2014). Human kidney stone analysis using X-ray powder diffraction. Journal of the Indian Institute of Science, 94(1), 35–44.

    CAS  Google Scholar 

  72. Mulongo-Masamba, R., El Kassri, T., Khachani, M., Arsalane, S., Halim, M., & El Hamidi, A. (2016). Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO4. Journal of Thermal Analysis and Calorimetry, 124, 171–180. https://doi.org/10.1007/s10973-015-5130-y

    CAS  Article  Google Scholar 

  73. Muschietti, L., Orto, V., & Garrido, G. (2016). Infrared Spectroscopic Analysis of Urinary Calculi: A Retrospective Study in Argentinean Patients. Asian Journal of Medicine and Health, 1(3), 1–9. https://doi.org/10.9734/ajmah/2016/29354

    Article  Google Scholar 

  74. Nair, C. G. R., & Ninan, K. N. (1978). Thermal decomposition studies: Part X. Thermal decomposition kinetics of calcium oxalate monohydrate—correlations with heating rate and samples mass. Thermochimica Acta, 23(1), 161–169.

    CAS  Article  Google Scholar 

  75. Öhman, S., Larsson, L., & Tiselius, H.-G. (1992). Clinical significance of phosphate in calcium oxalate renal stones. Annals of Clinical Biochemistry, 29(1), 59–63.

    Article  Google Scholar 

  76. Pal’chik, N. A., Moroz, T. N., Maksimova, N. V., & Dar’in, A. V. (2006). Mineral and microelement compositions of urinary stones. Russian Journal of Inorganic Chemistry, 51(7), 1098–1105. https://doi.org/10.1134/S0036023606070138

    Article  Google Scholar 

  77. Perlmutter, S., Hsu, C. T., Villa, P. A., & Katz, D. S. (2002). Sonography of a human jackstone calculus. Journal of Ultrasound in Medicine, 21, 1047–1051. https://doi.org/10.7863/jum.2002.21.9.1047

    Article  Google Scholar 

  78. Prien, E. L., & Frondel, C. (1947). Studies in urolithiasis; the composition of urinary calculi. The Journal of Urology, 57(6), 949–991. https://doi.org/10.1016/s0022-5347(17)69732-5

    CAS  Article  Google Scholar 

  79. Primiano, A., Persichilli, S., Gambaro, G., Ferraro, P. M., D’Addessi, A., Cocci, A., et al. (2014). FT-IR analysis of urinary stones: A helpful tool for clinician comparison with the chemical spot test. Disease Markers. https://doi.org/10.1155/2014/176165

    Article  Google Scholar 

  80. Ringertz, H. (1965). Optical and crystallographic data of uric acid and its dihydrate. Acta Crystallographica, 19, 286. https://doi.org/10.1107/s0365110x65003298

    CAS  Article  Google Scholar 

  81. Rivell, C. G., & Coren, J. S. (2012). Onesies, Twosies, not a game of Jackstones. Osteopathic Family Physician, 4, 88–90. https://doi.org/10.1016/j.osfp.2011.10.002

    Article  Google Scholar 

  82. Schnitzler, E., Kobelnik, M., Sotelo, G. F. C., Bannach, G., & Ionashiro, M. (2004). Thermoanalytical study of purine derivatives compounds. Ecletica Quimica, 29(1), 71–78. https://doi.org/10.1590/S0100-46702004000100009

    CAS  Article  Google Scholar 

  83. Schubert, G. (2006). Stone analysis. Urological Research, 34, 146–150. https://doi.org/10.1007/s00240-005-0028-y

    Article  Google Scholar 

  84. Sekkoum, K., Cheriti, A., Taleb, S., & Belboukhari, N. (2016). FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arabian Journal of Chemistry, 9, 330–334. https://doi.org/10.1016/j.arabjc.2011.10.010

    CAS  Article  Google Scholar 

  85. Selvaraju, R., Raja, A., & Thiruppathi, G. (2015). FT-IR spectroscopic, thermal analysis of human urinary stones and their characterization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 137, 1397–1402. https://doi.org/10.1016/j.saa.2014.09.046

    CAS  Article  Google Scholar 

  86. Shiekh, F. A., Khullar, M., & Singh, S. K. (2006). Lithogenesis: Induction of renal calcifications by nanobacteria. Urological Research, 34(1), 53–57.

    Article  Google Scholar 

  87. Siener, R., Glatz, S., Nicolay, C., & Hesse, A. (2004). The role of overweight and obesity in calcium oxalate stone formation. Obesity Research, 12(1), 106–113. https://doi.org/10.1038/oby.2004.14

    CAS  Article  Google Scholar 

  88. Singh, K. J., Tiwari, A., & Goyal, A. (2011). Jackstone: A rare entity of vesical calculus. Indian Journal of Urology. https://doi.org/10.4103/0970-1591.91449

    Article  Google Scholar 

  89. Singh, V. K., & Rai, P. K. (2014). Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: A review. Biophysical Reviews, 6, 291–310. https://doi.org/10.1007/s12551-014-0144-4

    CAS  Article  Google Scholar 

  90. Sivaguru, M., Saw, J. J., Williams, J. C., Lieske, J. C., Krambeck, A. E., Romero, M. F., et al. (2018). Geobiology reveals how human kidney stones dissolve in vivo. Scientific Reports, 8, 13731. https://doi.org/10.1038/s41598-018-31890-9

    CAS  Article  Google Scholar 

  91. Słojewski, M. (2011). Major and trace elements in lithogenesis. Central European Journal of Urology, 64(2), 58.

    Article  Google Scholar 

  92. Subasinghe, D., Goonewardena, S., & Kathiragamathamby, V. (2017). Jack stone in the bladder: Case report of a rare entity. BMC Urology, 17, 40. https://doi.org/10.1186/s12894-017-0230-6

    Article  Google Scholar 

  93. Suryawanshi, V. B., & Chaudhari, R. T. (2014). Growth and characterization of agar gel grown brushite crystals. Indian Journal of Materials Science. https://doi.org/10.1155/2014/189839

    Article  Google Scholar 

  94. Sweeney, A. P., & Dyer, R. B. (2015). The “jackstone” appearance. Abdominal Imaging, 40, 2906–2907. https://doi.org/10.1007/s00261-015-0440-x

    Article  Google Scholar 

  95. Türk, C, Donaldson, J. F., Neisius, A., Petrik, A., Skolarikos, A., & Thomas, K. (2019). EAU Guideline: Bladder Stones. https://uroweb.org/guideline/bladder-stones/

  96. Türk, C., Petřík, A., Sarica, K., Seitz, C., Skolarikos, A., Straub, M., & Knoll, T. (2016). EAU guidelines on interventional treatment for urolithiasis. European Urology. https://doi.org/10.1016/j.eururo.2015.07.041

    Article  Google Scholar 

  97. Turney, B. W., Appleby, P. N., Reynard, J. M., Noble, J. G., Key, T. J., & Allen, N. E. (2014). Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). European Journal of Epidemiology, 29(5), 363–369.

    CAS  Article  Google Scholar 

  98. Wang, C. J., Hsu, C. S., Chen, H. W., Tsai, P. C., & Chang, C. H. (2016). Long-term effects of lemonade therapy on hypocitraturic nephrolithiasis and stone recurrence: A mini review. International Journal of Nephrology and Kidney Failure, 2(1), 1–4.

    CAS  Google Scholar 

  99. Wang, L., Chen, M., He, P., Yu, H., Block, K. A., & Xie, Z. (2019). Composition and spatial distribution of elements and isotopes of a giant human bladder stone and environmental implications. Science of the Total Environment, 650, 835–846.

    CAS  Article  Google Scholar 

  100. Wilson, E. V., Bushiri, M. J., & Vaidyan, V. K. (2010). Characterization and FTIR spectral studies of human urinary stones from Southern India. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 77, 442–445. https://doi.org/10.1016/j.saa.2010.06.014

    CAS  Article  Google Scholar 

  101. Zhao, W., Sharma, N., Jones, F., Raiteri, P., Gale, J. D., & Demichelis, R. (2016). Anhydrous calcium oxalate polymorphism: A combined computational and synchrotron X-ray diffraction study. Crystal Growth & Design, 16(10), 5954–5965.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

ELETTRA Sincrotrone Trieste is thanked for the allocation of the beam-time, and Paolo Lotti for the assistance during the XRD data collection. Andrea Risplendente is thanked for the assistance during the EMPA/WDS analysis. The authors also thank: Antonia Cinelli and Valentina Materazzo for their collaboration in the first steps of the present investigation; Prof. Vincenzo Morra and Prof. Piergiulio Cappelletti for early discussions; Paolo Dello Russo (LITHOS lab) for helping us to prepare the thin sections.; the two anonymous referees for their precious and important suggestions which largely improved the manuscript. Lastly, the present investigation was carried out with the financial support of University of Sannio Benevento (Department of Science and Technology) research funding (FRA 2020 granted to dr. Mariano Mercurio).

Funding

This work was supported by Department of Science and Technology University of Sannio Benevento (FRA2020 granted to Mariano Mercurio).

Author information

Affiliations

Authors

Contributions

All the authors critically contributed to the writing and editing of manuscript draft, investigation, analysis and interpretation of data. The authors also approved the final version of the manuscript to be submitted for publication.

Corresponding author

Correspondence to F. Izzo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Human research/Consent to Participate/Consent to Publish

Clinical interviews were held in anonymous form. All patients consent to participate at present investigation and to publish the data in a journal article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mercurio, M., Izzo, F., Gatta, G.D. et al. May a comprehensive mineralogical study of a jackstone calculus and some other human bladder stones unveil health and environmental implications?. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-01083-x

Download citation

Keywords

  • Bladder stones
  • Jackstone calculus
  • Sea-urchin appearance
  • EMPA-WDS
  • Synchrotron radiation
  • HgSe