Skip to main content

Advertisement

Log in

Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North–West Russia)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The pollution of waterbodies with trace metals is of concern throughout the world due to their high toxicity. One of the main anthropogenic sources of trace metals entering natural waters is the mining and processing of minerals. Intensive development of the mining industry on the Kola Peninsula (the Murmansk region, Russia), exploration and development of new mineral resources have led to a sharp deterioration in the quality of surface waters of rivers and lakes. As a result of anthropogenic impact, accumulation of a wide range of metals (mainly Cu, Ni, Co, Pb, Cd, Mn, Sr, Al and Fe) is observed, as well as significant changes in the physicochemical parameters and radioactive conditions of surface waters. The most polluted waterbodies of the Kola Peninsula are located in the Monchegorsk, Olenegorsk and Apatit regions. Consumption of water from investigated contaminated sources can cause various high risks of human health. The results of this study will provide an informative basis for future risk assessments of the environment and human health, as well as for the development of integrated measures for managing the quality of surface waters of lakes and rivers of the Kola Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, S. V., Quraishi, S. M., Shafer, M. M., Passarelli, M. N., Freney, E. P., Chlebowski, R. T., et al. (2014). Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women’s Health Initiative. Environmental Health Perspectives, 122, 594–600. https://doi.org/10.1289/ehp.1307054

    Article  CAS  Google Scholar 

  • Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring and Management, 5, 27–35. https://doi.org/10.1016/j.enmm.2016.01.002

    Article  Google Scholar 

  • Ali, M. M., Ali, M. L., Proshad, R., Islam, S., Rahman, Z., Tusher, T. R., et al. (2019). Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Human and Ecological Risk Assessment: an International Journal. https://doi.org/10.1080/10807039.2019.1676635

    Article  Google Scholar 

  • Alidadi, H., Tavakoly Sany, S. B., Oftadeh, B. Z. G., Mohamad, T., Shamszade, H., & Fakhari, M. (2019). Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environmental Health and Preventive Medicine. https://doi.org/10.1186/s12199-019-0812-x

    Article  Google Scholar 

  • ATSDR (2019). Toxic substance portal: Toxicological profiles. Retrieved February 5, 2021, from https://www.atsdr.cdc.gov/spl/index

  • Bansal, O. P. (2020). Heavy Metal Toxicity in Public Health. In Health Risks of Potentially Toxic Metals Contaminated Water. 32 p. http://doi.org/https://doi.org/10.5772/intechopen.92141

  • Benson, N. U., Adedapo, A. E., Fred-Ahmadu, O. H., Williams, A. B., Udosen, E. D., Ayejuyo, O. O., et al. (2018). New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: A case study of the Gulf of Guinea. Regional Studies in Marine Science, 18, 44–56. https://doi.org/10.1016/j.rsma.2018.01.004

    Article  Google Scholar 

  • Bhattacharya, P. T., Misra, S. R., & Mohsina Hussain, M. (2016). Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica, 2016, 1–12. https://doi.org/10.1155/2016/5464373

    Article  CAS  Google Scholar 

  • Bhoelan, B. S., Stevering, C. H., van der Boog, A. T. J., & van der Heyden, M. A. G. (2014). Barium toxicity and the role of the potassium inward rectifier current. Clinical Toxicology, 52(6), 584–593. https://doi.org/10.3109/15563650.2014.923903

    Article  CAS  Google Scholar 

  • Biswas, P. K., Uddin, N., Alam, S., Sakib, T. U., Sultana, S., & Ahmed, T. (2017). Evaluation of heavy metal pollution indices in irrigation and drinking water systems of Barapukuria coal mine area Bangladesh. American Journal of Water Resources. https://doi.org/10.12691/ajwr-5-5-2

    Article  Google Scholar 

  • Bonotto, D. M., Bueno, T. O., Tessari, B. W., & Silva, A. (2009). The natural radioactivity in water by gross alpha and gross beta measurement. Radiation Measurements, 44, 92–101.

    Article  CAS  Google Scholar 

  • Borylo, A., & Skwarzec, B. (2013). Activity disequilibrium between 234U and 238U isotopes in natural environment. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-014-3001-9

    Article  Google Scholar 

  • Caerio, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5, 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001

    Article  CAS  Google Scholar 

  • Chowdhury, S., Mazumder, M. A., Alattas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of the Total Environment, 569–570, 476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    Article  CAS  Google Scholar 

  • CPH. (2009). Annual Reports of the Centre of Medical Statistics. CMS Press.

    Google Scholar 

  • Dauvalter, V. A. (2012). Geoecology of bottom sediments of lakes. MSTU Publishing House (in Russian).

  • Dauvalter, V. A. (2019). Lakes hydrochemistry in the zone of influence of iron-mining industry waste waters. Vestnik of MSTU. https://doi.org/10.21443/1560-9278-2019-22-1-167-176

    Article  Google Scholar 

  • Dauvalter, V. A., & Dauvalter, M. V. (2019). Ecological condition of underground waters of the Vostochny mine of Apatit JSC. Proceedings of the Fersman Scientific Session, Geological Institute KSC RAS, 16, 131–135 (in Russian). https://doi.org/10.31241/FNS.2019.16.027

  • Dauvalter, V. A., Dauvalter, M. V., Saltan, N. V., & Semenov, Ye. (2009). The chemical composition of surface waters in the zone of influence of the Severonikel plant. Geokhimiya, 6, 628–646.

    Google Scholar 

  • Dauvalter, V. A., Dauvalter, M. V., & Slukovskii, Z. I. (2020). The dynamics of the chemical composition of surface water in the zone of influence of North-West Phosphorous Company JSC. 5th International Conference ‘Arctic: History and Modernity’. IOP Conference Series: Earth and Environmental Science, 539, 012026. https://doi.org/10.1088/1755-1315/539/1/012026

  • Dauvalter, V. A., & Kashulin, N. A. (2015). The influence of mining and metallurgical enterprises on the chemical composition of Lake Imandra. Murmansk Region: Biosphere. https://doi.org/10.24855/biosfera.v7i3.86

    Book  Google Scholar 

  • Dauvalter, V. A., & Kashulin, N. A. (2018). Accumulation and migration of chemical elements in the Arctic terrestrial and aquatic ecosystems in the impact zone of emissions from “Pechenganickel” company. Proceedings of the Karelian Scientific Center of RAS, 3, 31–42. (in Russian).

    Google Scholar 

  • Denisov, D., Terentjev, P., Valkova, S., & Kudryavtzeva, L. (2020). Small lakes ecosystems under the impact of non-ferrous metallurgy (Russia, Murmansk Region). Environments, 7(4), 29. https://doi.org/10.3390/environments7040029

    Article  Google Scholar 

  • Edet, A., & Offiong, O. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal, 57, 295–304. https://doi.org/10.1023/B:GEJO.0000007250.92458.de

    Article  Google Scholar 

  • Evseev, A. V., & Krasovskaya, T. M. (2017). Toxic metals in soils of the Russian North. Journal of Geochemical Exploration, 174, 128–131. https://doi.org/10.1016/j.gexplo.2015.05.018

    Article  CAS  Google Scholar 

  • Gaur, V. K., Gupta, S. K., Pandey, S. D., Gopal, K., & Misra, V. (2005). Distribution of heavy metals in sediment and water of river Gomti. Environmental Monitoring and Assessment, 102, 419–433. https://doi.org/10.1007/s10661-005-6395-6

    Article  CAS  Google Scholar 

  • Genthe, B., Le Roux, W. J., Schachtschneider, K., Oberholster, P. J., Aneck-Hahn, N. H., & Chamier, J. (2013). Health risk implications from simultaneous exposure to multiple environmental contaminants. Ecotoxicology and Environmental Safety, 93, 171–179. https://doi.org/10.1016/j.ecoenv.2013.03.032

    Article  CAS  Google Scholar 

  • Guogang, J., & Giancarlo, T. (2007). Estimation of radiation doses to members of the public in Italy from intakes of some important naturally occuring radionuclides (238U, 234U, 235U, 226Ra, 228Ra, 224Ra and 210Po) in Drinking Water. Applied Radiation and Isotopes, 65, 849–857. https://doi.org/10.1016/j.apradiso.2007.01.022

    Article  CAS  Google Scholar 

  • Haque, A., Jewel, A. S., Hasan, J., Islam, M., Ahmed, S., & Alam, L. (2019). Seasonal variation and ecological risk assessment of heavy metal contamination in surface waters of the Ganges river (northwestern Bangladesh). Malaysian Journal of Analytical Sciences. https://doi.org/10.17576/mjas-2019-2302-14

    Article  Google Scholar 

  • He, L., Gao, B., Luo, X., Jiao, J., Qin, H., Zhang, C., et al. (2018). Health risk assessment of heavy metals in surface water near a uranium tailing pond in Jiangxi Province South China. Sustainability, 10(4), 1113. https://doi.org/10.3390/su10041113

    Article  CAS  Google Scholar 

  • Hernández-García, A., Romero, D., Gómez-Ramírez, P., María-Mojica, P., Martínez-López, E., & GarcíaFernández, A. J. (2014). In vitro evaluation of cell death induced by cadmium, lead and their binary mixtures on erythrocytes of common buzzard (Buteo buteo). Toxicology in Vitro, 28, 300–306. https://doi.org/10.1016/j.tiv.2013.11.005

    Article  CAS  Google Scholar 

  • Hong, Y. S., Song, K. H., & Chung, J. Y. (2014). Health effects of chronic arsenic exposure. Journal of Preventive Medicine and Public Health, 47, 245–252. https://doi.org/10.3961/jpmph.14.035

    Article  Google Scholar 

  • Hu, B., Wang, C., Xu, X., Zhang, S., Bao, S., & Li, Y. (2016). Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotoxicology and Environmental Safety, 130, 185–192. https://doi.org/10.1016/j.ecoenv.2016.04.002

    Article  CAS  Google Scholar 

  • Huffmeyer, N., Klasmeier, J., & Matthies, M. (2009). Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER. Science of the Total Environment, 407, 2296–2305. https://doi.org/10.1016/j.scitotenv.2008.11.055

    Article  CAS  Google Scholar 

  • Igbokwe, I. O., Igwenagu, E., & Igbokwe, N. A. (2019). Aluminium toxicosis: A review of toxic actions and effects. Interdisciplinary Toxicology, 12(2), 45–70. https://doi.org/10.2478/intox-2019-0007

    Article  CAS  Google Scholar 

  • Iqbal, J., & Shah, M. H. (2013). Health risk assessment of metals in surface water from freshwater source lakes, Pakistan. Human and Ecological Risk Assessment: An International Journal, 19(6), 1530–1543. https://doi.org/10.1080/10807039.2012.716681

    Article  CAS  Google Scholar 

  • Islam, M. S., Proshad, R., & Ahmed, S. (2018). Ecological risk of heavy metals in sediment of an urban river in Bangladesh. Human and Ecological Risk Assessment: An International Journal, 24(3), 699–720.

    Article  CAS  Google Scholar 

  • Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2018). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of yongding river in a coal mine brownfield. Journal of Soils and Sediments, 18(2), 624–639. https://doi.org/10.1007/s11368-017-1833-y

    Article  CAS  Google Scholar 

  • Jordan, Y. C., Ghulam, A., & Hartling, S. (2014). Traits of surface water pollution under climate and land use changes: A remote sensing and hydrological modeling approach. Earth-Science Reviews, 128, 181–195. https://doi.org/10.1016/j.earscirev.2013.11.005

    Article  CAS  Google Scholar 

  • Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T. D., & Skoulikidis, N. (2021). Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere, 263, 128192. https://doi.org/10.1016/j.chemosphere.2020.128192

    Article  CAS  Google Scholar 

  • Kashulin, N. A., Bekkelund, A. A., Dauvalter, V. A., & Petrova, O. V. (2019). Apatite mining and processing production and eutrophication of the Arctic Lake Imandra. Arctic Ecology and Economy. https://doi.org/10.25283/2223-4594-2019-3-16-34

    Article  Google Scholar 

  • Kuang, C., Shan, Y., Gu, J., Shao, H., Zhang, W., Zhang, Y., et al. (2016). Assessment of heavy metal contamination in water body and riverbed sediments of the Yanghe River in the Bohai Sea, China. Environmental Earth Sciences, 75, 1105–1118. https://doi.org/10.1007/s12665-016-5902-0

    Article  CAS  Google Scholar 

  • Kumar, V., Daman Parihar, R., Sharma, A., Bakshi, P., Sidhu, P. S., G., Shreeya Bali, S., , et al. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364. https://doi.org/10.1016/j.chemosphere.2019.124364

    Article  CAS  Google Scholar 

  • Lambert, M., Leven, B. A., & Green, R. M. (2000). New methods of cleaning up heavy metal in soils and water. Kansas State University.

    Google Scholar 

  • Li, N., Kang, Y., Pan, W., Zeng, L., Zhang, Q., & Luo, J. (2015). Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Science of the Total Environment, 521–522, 144–151. https://doi.org/10.1016/j.scitotenv.2015.03.081

    Article  CAS  Google Scholar 

  • Li, S. Y., & Zhang, Q. F. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. Journal of Hazardous Materials, 176(1–3), 579–588. https://doi.org/10.1016/j.jhazmat.2009.11.069

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Liu, Y., Peng, Y., Yue, D., Yin, Q., & Xiao, L. (2015). Assessment of heavy metal enrichment, bioavailability, and controlling factors in sediments of Taihu Lake, China. Soil and Sediment Contamination: An International Journal, 24, 262–275. https://doi.org/10.1080/15320383.2015.948610

    Article  CAS  Google Scholar 

  • M 03–505–119–03 (2003). Methods of quantitative chemical analysis. Determination of metals in drinking, mineral, natural, waste water and atmospheric precipitation by the atomic absorption method. St. Petersburg.

  • Ma, Y., Egodawatta, P., McGree, J., Liu, A., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 557–558, 764–772. https://doi.org/10.1016/j.scitotenv.2016.03.067

    Article  CAS  Google Scholar 

  • Mazukhina, S. I., Sandimirov, S. S., Pozhilenko, V. I., & Gudkov, A. V. (2020). The genesis of the natural water chemistry in the South-Western Khibiny Mountains (the Malaya Belaya River Basin). Journal of Environmental Science and Health, Part A, 55(5), 511–516. https://doi.org/10.1080/10934529.2019.1710086

    Article  CAS  Google Scholar 

  • Methods for measuring the volumetric activity of uranium isotopes (238U, 234U, 235U) in samples of natural (fresh and saline), process and waste waters by the alpha spectrometric method with radiochemical preparation, 2013. Moscow.

  • Mishra, S., Dwivedi, S. P., & Singh, R. B. (2010). A review on epigenetic effect of heavy metal carcinogens on human health. The Open Nutraceuticals Journal, 3(1), 188–193. https://doi.org/10.2174/1876396001003010188

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., et al. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad Iran. Methodsx, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017

    Article  Google Scholar 

  • Moiseenko, T. I., Morgunov, B. A., Gashkina, N. A., Megorskiy, V. V., & Pesiakova, A. A. (2018). Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: Case study of the Murmansk region, northwest of the Kola Peninsula Russia. Environmental Research Letters, 13(6), 065005. https://doi.org/10.1088/1748-9326/aab5d2

    Article  CAS  Google Scholar 

  • Moiseyenko, T. I., Dauvalter, V. A., Lukin. A. A., Kudryavtseva, L. P., Ilyashuk, B. P. et al. (2002) Anthropogenic modification of the ecosystem of Lake Imandra. 402 p

  • Naveedullah, H. M. Z., Yu, C., Shen, H., Duan, D., Shen, C., et al. (2014). Cncentrations and human health risk assessment of selected heavy metals in surface water of the siling reservoir watershed in Zhejiang province China. Polish Journal of Environmental Studies, 23(3), 801–811.

    CAS  Google Scholar 

  • Naymushina, O., Shvartsev, S., & Ses, K. (2014). Hydrochemistry and Composition of Hydrocarbons in the Waters of Peatlands in Western Siberia. IERI Procedia, 8, 119–124. https://doi.org/10.1016/j.ieri.2014.09.020

    Article  Google Scholar 

  • Nordberg, G. F., Fowler, B. A., Nordberg, M., & Priberg, L. (2007). Handbook on the Toxicology of Metals. Elsevier.

    Google Scholar 

  • Nuccetelli, C., Rusconi, R., & Forte, M. (2012). Radioactivity in drinking water: Regulations, monitoring results and radiation protection issues. Annali Dell’istituto Superiore Di Sanita, 48(4), 362–373. https://doi.org/10.4415/ANN_12_04_04

    Article  CAS  Google Scholar 

  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science. https://doi.org/10.1007/s13201-020-01233-z

    Article  Google Scholar 

  • OEHHA (2020). California Office of Environmental Health Hazard Assessment (OEHHA). Technical support document for cancer potency factors 2009, Appendix A: A lookup table containing unit risk and cancer potency values.

  • Ojedokun, A. T., & Bello, O. S. (2016). Sequestering heavy metals from wastewater using cow dung. Water Resources and Industry, 13, 7–13. https://doi.org/10.1016/j.wri.2016.02.002

    Article  Google Scholar 

  • Patlolla, A. K., Armstrong, N., & Tchounwou, P. B. (2008). Cytogenetic evaluation of potassium dichromate toxicity in bone marrow cells of Sprague-Dawley rats. Metal Ions in Biology and Medicine, 10, 353–358.

    Google Scholar 

  • Patlolla, A., Barnes, C., Field, J., Hackett, D., & Tchounwou, P. B. (2009a). Potassium dichromateinduced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. International Journal of Environmental Research and Public Health, 6, 643–653. https://doi.org/10.3390/ijerph6020643

    Article  CAS  Google Scholar 

  • Patlolla, A., Barnes, C., Yedjou, C., Velma, V., & Tchounwou, P. B. (2009b). Oxidative stress, DNA damage and antioxidant enzyme activity induced by hexavalent chromium in Sprague Dawley rats. Environmental Toxicology, 24, 66–73. https://doi.org/10.1002/tox.20395

    Article  CAS  Google Scholar 

  • Prasad, B., & Bose, J. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology, 41, 183–188. https://doi.org/10.1007/s002540100380

    Article  CAS  Google Scholar 

  • Proshad, R., Kormoker, T., & Islam, S. (2019). Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River. Toxin Reviews, 40(1), 77–101. https://doi.org/10.1080/15569543.2018.1564143

    Article  CAS  Google Scholar 

  • Pujol, L., & Sanchez-Cabeza, J. A. (2000). Natural and artificial radioactivity in surface waters of the Ebro river basin (Northeast Spain). Journal of Environmental Radioactivity, 51, 181–210. https://doi.org/10.1016/S0265-931X(00)00076-X

    Article  CAS  Google Scholar 

  • Qu, C., Sun, K., Wang, S., Huang, L., & Bi, J. (2012). Monte carlo simulation-based health risk assessment of heavy metal soil pollution: A case study in the Qixia mining area. Human and Ecological Risk Assessment: An International Journal, 18(4), 733–750. https://doi.org/10.1080/10807039.2012.688697

    Article  CAS  Google Scholar 

  • Qu, L., Huang, H., Xia, F., Liu, Y., Dahlgren, R. A., Zhang, M., et al. (2018). Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environmental Pollution, 237, 639–649. https://doi.org/10.1016/j.envpol.2018.02.020

    Article  CAS  Google Scholar 

  • Radiation monitoring technique. (2013). Total alpha and beta activity of natural waters (fresh and mineralized). Sample preparation and measurements. Moscow.

  • Saha, P., & Paul, B. (2019). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment: An International Journal, 25(4), 966–987. https://doi.org/10.1080/10807039.2018.1458595

    Article  CAS  Google Scholar 

  • Sarkar, B. (2009). Heavy Metals in the Environment. CRC Express Inc.

    Google Scholar 

  • Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives, 118, 82–190. https://doi.org/10.1289/ehp.0901234

    Article  CAS  Google Scholar 

  • Singh, R., Venkatesh, A. S., Syed, T. H., Reddy, A. G. S., Kumar, M., & Kurakalva, R. M. (2017). Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba coalfield Central India. Environmental Earth Sciences, 76, 566. https://doi.org/10.1007/s12665-017-6899-8

    Article  CAS  Google Scholar 

  • Singh, U. K., & Kumar, B. (2017). Pathways of heavy metals contamination and associated human health risk in Ajay River Basin, India. Chemosphere, 174, 183–199. https://doi.org/10.1016/j.chemosphere.2017.01.103

    Article  CAS  Google Scholar 

  • Syromyatnikov, N. G., & Tolmachev, I. I. (1962). Study of the U234 / U238 isotope ratio in aqueous extracts from uranium-phosphate-zirconium ores in connection with their genesis. Atomic Energy, 13(6), 600–603. (in Russian).

    CAS  Google Scholar 

  • Tang, W., Zhang, C., Zhao, Y., Shan, B., & Song, Z. (2017). Pollution, toxicity, and ecological risk of heavy metals in surface river sediments of a large basin undergoing rapid economic development. Environmental Toxicology and Chemistry, 36, 1149–1155. https://doi.org/10.1002/etc.3650

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. In A. Luch (Ed.) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, 101. 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  • USEPA (2004). Risk assessment guidance for superfund. Volume 1: Human health evaluation manual (Part E, Supplemental guidance for dermal risk assessment). Washington, USA.

  • Wanda, E. M. M., Gulula, L. C., & Phiri, G. (2012). Determination of characteristics and drinking water quality index in Mzuzu City, Northern Malawi. Physics and Chemistry of the Earth, Parts A/b/c, 50–52, 92–97. https://doi.org/10.1016/j.pce.2012.09.004

    Article  Google Scholar 

  • WHO (2017). Guidelines for Drinking-water Quality, fourth ed. incorporating the first addendum. Geneva.

  • Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bulletin of Environmental Contamination and Toxicology, 82, 405–409. https://doi.org/10.1007/s00128-008-9497-3

    Article  CAS  Google Scholar 

  • Yugai, V. S., Dauvalter, V. A., & Kashulin, N. A. (2013). The content of bioavailable forms of metal compounds in bottom sediments of water bodies and the accumulation coefficient (Kd) as indicators of the ecological situation of water bodies (for example, lakes in the Murmansk region). Vestnik MGTU, 16(3), 591–600. (in Russian).

    Google Scholar 

  • Zakir, H. M., Sharmin, S., Akter, A., & Rahmana, S. (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area Bangladesh. Environmental Advances, 2, 100005. https://doi.org/10.1016/j.envadv.2020.100005

    Article  Google Scholar 

  • Zhu, F., Qu, L., Fan, W., Wang, A., Hao, H., Li, X., et al. (2015). Study on heavy metal levels and its health risk assessment in some edible fishes from nansi lake China. Environmental Monitoring and Assessment, 187(4), 161. https://doi.org/10.1007/s10661-015-4355-3

    Article  CAS  Google Scholar 

  • Zubova, E. M., Kashulin, N. A., Dauvalter, V. A., Denisov, D. B., Valkova, S. A., Vandysh, O. I., et al. (2020). Long-term environmental monitoring in an Arctic lake polluted by metals under climate change. Environments, 7(5), 34. https://doi.org/10.3390/environments7050034

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by the grant of the President of Russian Federation for young scientists MK-1919.2020.5. Study of uranium isotopic composition in surface water was carried out under the grant of the Russian Science Foundation No 20-77-10057. The authors thank Kosyakov D.S. and Kozhevnikov A.Yu. for the opportunity to use equipment of the Core Facility Centre ‘Arktika’, Northern (Arctic) Federal University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, validation and writing—original draft preparation, were performed by EY and AD. Methodology was performed by EY, AD, SD, SZ and NI. Formal analysis and investigation were performed by EY, AD, SD, SZ and NI. Writing—review and editing, was performed by EY and AD. Funding acquisition was performed by EY. Project administration and resources were performed by EY and AD. Supervision and visualization were performed by EY. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Evgeny Yakovlev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, E., Druzhinina, A., Druzhinin, S. et al. Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North–West Russia). Environ Geochem Health 44, 2465–2494 (2022). https://doi.org/10.1007/s10653-021-01027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01027-5

Keywords

Navigation