Skip to main content

Potentially toxic elements in surface soils of the Lower Don floodplain and the Taganrog Bay coast: sources, spatial distribution and pollution assessment

Abstract

The pollution of floodplain, deltaic and adjacent coastal soils in large fluvial systems, considered an urgent environmental problem, as well as potentially toxic elements in such environments, can negatively affect aquatic ecosystems, as well as pose significant risks to human health. This paper is devoted to the geochemistry of potentially toxic elements in soils of the Lower Don basin, which is one of the largest and most anthropogenically transformed water bodies in Southern Russia, as well as the adjacent areas of the Taganrog Bay coast. The median element concentrations in the soils of the study area were consistent with the world soil average and the contents of elements in background soils. Comparative assessment of the spatial distributions as well as the results of Pearson’s correlations, cluster analysis and principal component analysis showed that Cr, Ni, Cu and Zn are predominantly of natural origin; Mn and As are of mixed sources; and Cd and Pb are predominantly of anthropogenic origin. The geochemical anomalies of elements were associated with the impact of local anthropogenic sources. Geochemical background values for Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soils of the Lower Don and the Taganrog Bay coast determined using the ‘median + 2 median absolute deviations’ approach are presented. The highest values of the integrated pollution indices were observed in floodplain soils of small rivers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The authors confirm that the summary of data supporting the findings of this study are available within the article. However, detailed data of this study are available from corresponding author upon request.

References

  1. Arafa, W. M., Badawy, W. M., Fahmi, N. M., Ali, K., Gad, M. S., Duliu, O. G., et al. (2015). Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis. Journal of African Earth Sciences, 107, 57–64. https://doi.org/10.1016/j.jafrearsci.2015.04.004

    CAS  Article  Google Scholar 

  2. Bartsev, O. B., Nikanorov, A. M., Garkusha, D. N., & Zubkov, E. A. (2016). Assessment of groundwater impact on water quality in the built-up areas at the Lower Don. Russian Meteorology and Hydrology, 41, 504–512. https://doi.org/10.3103/S1068373916070086

    Article  Google Scholar 

  3. CCME (Canadian Council of Ministers of the Environment). (1999). Canadian soil quality guidelines for the protection of environmental and human health: Chromium (total 1997) (VI 1999). In Canadian environmental quality guidelines. Winnipeg: Canadian Council of Ministers of the Environment. Retrieved December 5, 2021, from https://ceqg-rcqe.ccme.ca/download/en/262/.

  4. Chalov, S., Thorslund, J., Kasimov, N., Aybullatov, D., Ilyicheva, E., Karthe, D., et al. (2017). The Selenga River delta: A geochemical barrier protecting Lake Baikal waters. Regional Environmental Change, 17, 2039–2053. https://doi.org/10.1007/s10113-016-0996-1

    Article  Google Scholar 

  5. Chikin, A. L., Kleshchenkov, A. V., & Chikina, L. G. (2019). Numerical study of the water flow effect on the water level in the Don Mouth. Physical Oceanography. https://doi.org/10.22449/1573-160X-2019-4-316-325

    Article  Google Scholar 

  6. Dada, O. A., Li, G., Qiao, L., Ding, D., Ma, Y., & Xu, J. (2016). Seasonal shoreline behaviors along the arcuate Niger Delta coast: Complex interaction between fluvial and marine processes. Continental Shelf Research, 122, 51–67. https://doi.org/10.1016/j.csr.2016.03.002

    Article  Google Scholar 

  7. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behavior in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025

    CAS  Article  Google Scholar 

  8. Elbehiry, F., Elbasiouny, H., El-Ramady, H., & Brevik, E. C. (2019). Mobility, distribution, and potential risk assessment of selected trace elements in soils of the Nile Delta Egypt. Environmental Monitoring and Assessment, 191, 713. https://doi.org/10.1007/s10661-019-7892-3

    CAS  Article  Google Scholar 

  9. Enya, O., Lin, C., & Qin, J. (2019). Heavy metal contamination status in soil-plant system in the Upper Mersey estuarine floodplain, Northwest England. Marine Pollution Bulletin, 146, 292–304. https://doi.org/10.1016/j.marpolbul.2019.06.026

    CAS  Article  Google Scholar 

  10. Fedorov, Y. A., Khansivarova, I. M., & Berezan, O. A. (2001). Distribution and behavior of mercury in bottom sediments of the lower Don and Taganrog Bay. Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 3, 76–81. (in Russian).

    Google Scholar 

  11. Förstner, U., Heise, S., Schwartz, R., Westrich, B., & Ahlf, W. (2004). Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe river catchment area. Journal of Soils and Sediments, 4, 247–260. https://doi.org/10.1007/BF02991121

    Article  Google Scholar 

  12. Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal, 23, 779–799. https://doi.org/10.1080/15320383.2014.872597

    CAS  Article  Google Scholar 

  13. Ge, M., Liu, G., Liu, H., Yaun, Z., & Liu, Y. (2019). The distributions, contamination status, and health risk assessments of mercury and arsenic in the soils from the Yellow River Delta of China. Environmental Science and Pollution Research, 26, 35094–35106. https://doi.org/10.1007/s11356-019-06435-w

    CAS  Article  Google Scholar 

  14. Glennon, M. M., Harris, P., Ottesen, R. T., Scanlon, R. P., & O’Connor, P. J. (2014). The Dublin SURGE Project: Geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland. Environmental Geochemistry and Health, 36, 235–254. https://doi.org/10.1007/s10653-013-9561-8

    CAS  Article  Google Scholar 

  15. GOST 17.4.4.02–2017. (2018). Nature protection. Soils. Methods for sampling and preparation of soil for chemical, bacteriological, helmintological analysis. Moscow: Standardinform. (in Russian).

  16. Hawkes, H. E., & Webb, J. S. (1962). Geochemistry in mineral exploration. Harper.

    Google Scholar 

  17. IUSS Working Group WRB. (2015) World Reference Base of Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports no. 106. Rome: FAO.

  18. Ivanov, V. V., Korotayev, V. N., Rimsky-Korsakov, N. A., Pronin, A. A., & Chernov, A. V. (2013). Floodplain structure and channel dynamics in the lower reaches of the Don River. Vestnik Moskovskogo Universiteta Seria 5. Geografia, 5, 60–66. (in Russian).

    Google Scholar 

  19. Jiménez-Ballesta, R., García-Navarro, F. J., Bravo, S., Amorós, A., Pérez-de-los-Reyes, C., & Mejías, M. (2017). Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health, 39, 1159–1177. https://doi.org/10.1007/s10653-016-9884-3

    CAS  Article  Google Scholar 

  20. Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158

    Book  Google Scholar 

  21. Kasimov, N., Karthe, D., & Chalov, S. (2017). Environmental change in the Selenga River—Lake Baikal Basin. Regional Environmental Change, 17, 1945–1949. https://doi.org/10.1007/s10113-017-1201-x

    Article  Google Scholar 

  22. Kasimov, N., Shinkareva, G., Lychagin, M., Chalov, S., Pashkina, M., Thorslund, J., et al. (2020a). River water quality of the Selenga-Baikal Basin: Part II—Metal partitioning under different hydroclimatic conditions. Water, 12(9), 2392. https://doi.org/10.3390/w12092392

    CAS  Article  Google Scholar 

  23. Kasimov, N., Shinkareva, G., Lychagin, M., Kosheleva, N., Chalov, S., Pashkina, M., et al. (2020b). River water quality of the Selenga-Baikal basin: Part I—Spatio-temporal patterns of dissolved and suspended metals. Water, 12(8), 2137. https://doi.org/10.3390/w12082137

    CAS  Article  Google Scholar 

  24. Klyonkin, A. A., Korablina, I. V., & Korpakova, I. G. (2007). Description of the current level of pollution of water and bottom sediments of the Sea of Azov by heavy metals. Ecology and Industry of Russia, 5, 30–33. (in Russian).

    Google Scholar 

  25. Konstantinova, E., Burachevskaya, M., Mandzhieva, S., Bauer, T., Minkina, T., Chaplygin, V., et al. (2020). Geochemical transformation of soil cover and vegetation in a drained floodplain lake affected by long-term discharge of effluents from rayon industry plants, lower Don River Basin, Southern Russia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00683-3

    Article  Google Scholar 

  26. Konstantinova, E., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Bauer, T., Zamulina, I., et al. (2021). Exchangeable form of potentially toxic elements in floodplain soils along the river-marine systems of Southern Russia. Eurasian Journal of Soil Science. https://doi.org/10.18393/ejss.838700

    Article  Google Scholar 

  27. Kosyan, R. D., & Krylenko, M. V. (2019). Modern state and dynamics of the sea of Azov coasts. Estuarine, Coastal and Shelf Science, 224, 314–323. https://doi.org/10.1016/j.ecss.2019.05.008

    Article  Google Scholar 

  28. Kowalska, J. B., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    CAS  Article  Google Scholar 

  29. Krylenko, M. R., Kosyan, V., & Krylenko, V. (2017). Lagoons of the smallest Russian sea. In R. Kosyan (Ed.), The Diversity of Russian Estuaries and Lagoons Exposed to Human Influence (pp. 111–148). Springer, Cham. https://doi.org/10.1007/978-3-319-43392-9_5.

  30. Kürzl, H. (1988). Exploratory data analysis: Recent advances for the interpretation of geochemical data. Journal of Geochemical Exploration, 30, 309–322. https://doi.org/10.1016/0375-6742(88)90066-0

    Article  Google Scholar 

  31. Kuznetsov, A. N., & Fedorov, Y. A. (2014). Oil components in the mouth area of the Don R. and in the Sea of Azov: Results of many-year studies. Water Resources, 41, 55–64. https://doi.org/10.1134/S0097807814010072

    CAS  Article  Google Scholar 

  32. Labaz, B., Kabala, C., & Waroszewski, J. (2019). Ambient geochemical baselines for trace elements in Chernozems—approximation of geochemical soil transformation in an agricultural area. Environmental Monitoring and Assessment, 191, 19. https://doi.org/10.1007/s10661-018-7133-1

    CAS  Article  Google Scholar 

  33. Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., Van Gestel, C. A. M., Hein, T., et al. (2009). How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution, 157, 3336–3346. https://doi.org/10.1016/j.envpol.2009.06.004

    CAS  Article  Google Scholar 

  34. Lychagin, M. Y., Tkachenko, A. N., Kasimov, N. S., & Kroonenberg, S. B. (2015). Heavy metals in the water, plants, and bottom sediments of the Volga river mouth area. Journal of Coastal Research, 31, 859–868. https://doi.org/10.2112/JCOASTRES-D-12-00194.1

    CAS  Article  Google Scholar 

  35. Maev, E. G., Myslivets, V. I., & Zverev, A. S. (2009). Structure of the upper layer of deposits and bottom relief of the Taganrog Bay of the Azov Sea. Moscow University Bulletin. Geography, 5, 77–82. (in Russian).

    Google Scholar 

  36. Matishov, G. G., & Grigorenko, K. S. (2017). Causes of salinization of the Gulf of Taganrog. Doklady Earth Sciences, 477, 1311–1315. https://doi.org/10.1134/S1028334X17110034

    CAS  Article  Google Scholar 

  37. Matishov, G. G., Stepanyan, O. V., Harkovskii, V. M., Startsev, A. V., Bulysheva, N. I., Semin, V. V., et al. (2016). Characteristic of Lower Don aquatic ecosystem in late autumn. Water Resources, 43, 873–884. https://doi.org/10.1134/S009780781606004X

    CAS  Article  Google Scholar 

  38. Minkina, T. M., Fedorov, Y. A., Nevidomskaya, D. G., Polshina, T. N., Mandzhieva, S. S., & Chaplygin, V. A. (2017). Heavy metals in soils and plants of the don river estuary and the Taganrog Bay coast. Eurasian Soil Science, 50, 1033–1047. https://doi.org/10.1134/S1064229317070067

    CAS  Article  Google Scholar 

  39. Minkina, T. M., Nevidomskaya, D. G., Polshina, T. N., Fedorov, Y. A., Mandzhieva, S. S., Chaplygin, V. A., et al. (2017). Heavy metals in the soil–plant system of the Don River estuarine region and the Taganrog Bay coast. Journal of Soils and Sediments, 17, 1474–1491. https://doi.org/10.1007/s11368-016-1381-x

    Article  Google Scholar 

  40. Müller, G. (1986). Schadstoffe in sedimenten-sedimente als schadstoffe. Mitteilungen Der Österreichischen Geologischen Gesellschaft, 79, 107–126. (in German).

    Google Scholar 

  41. Nemerow, N. L. (1991). Stream, lake, estuary, and ocean pollution (2nd ed.). Van Nostrand Reinhold.

    Google Scholar 

  42. Nikanorov, A. M. (2014). Selective response of water ecosystems to the anthropogenic effect. Doklady Earth Sciences, 459, 1573–1575. https://doi.org/10.1134/S1028334X14120101

    CAS  Article  Google Scholar 

  43. Nikanorov, A. M., & Khoruzhaya, T. A. (2012). Tendencies of long-term changes in water quality of water bodies in the South of Russia. Geography and Natural Resources, 33, 125–130. https://doi.org/10.1134/S1875372812020047

    Article  Google Scholar 

  44. OST 10–259–2000. (2001). Soil. X-ray fluorescence determination of the total content of heavy metals. Moscow: The Russian Federation Ministry of Agriculture. (in Russian).

  45. Pahlavan-Rad, M. R., & Alireza, A. (2018). Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). CATENA, 160, 275–281. https://doi.org/10.1016/j.catena.2017.10.002

    CAS  Article  Google Scholar 

  46. Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 578, 633–648. https://doi.org/10.1016/j.scitotenv.2016.11.010

    CAS  Article  Google Scholar 

  47. Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021

    CAS  Article  Google Scholar 

  48. Reimann, C., & Garret, R. G. (2005). Geochemical background: Concept and reality. Science of the Total Environment, 350, 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047

    CAS  Article  Google Scholar 

  49. Reimann, C., Garrett, R. G., & Filzmoser, P. (2005). Background and threshold–critical comparison of methods of determination. Science of the Total Environment., 346, 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023

    CAS  Article  Google Scholar 

  50. Rennert, T., Rabus, W., & Rinklebe, J. (2017). Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils. Environmental Geochemistry and Health, 39, 331–344. https://doi.org/10.1007/s10653-016-9859-4

    CAS  Article  Google Scholar 

  51. Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. https://doi.org/10.1016/j.envint.2019.02.011

    CAS  Article  Google Scholar 

  52. SanPiN 1.2.3685–21. (2021, January 28). Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Retrieved June 29, 2021, from https://docs.cntd.ru/document/573500115. (in Russian).

  53. Schindler, S., Sebesvari, Z., Damm, C., Euller, K., Mauerhofer, V., Schneidergruber, A., et al. (2014). Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landscape Ecology, 29, 229–244. https://doi.org/10.1007/s10980-014-9989-y

    Article  Google Scholar 

  54. Schulz-Zunkel, C., Rinklebe, J., & Bork, H.-R. (2015). Trace element release patterns from three floodplain soils under simulated oxidized–reduced cycles. Ecological Engineering, 83, 485–495. https://doi.org/10.1016/j.ecoleng.2015.05.028

    Article  Google Scholar 

  55. Shaheen, S. M., Kwon, E. E., Biswas, J. K., Tack, F. M. G., Ok, Y. S., & Rinklebe, J. (2017). Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 180, 553–463. https://doi.org/10.1016/j.chemosphere.2017.04.054

    CAS  Article  Google Scholar 

  56. Shaheen, S. M., & Rinklebe, J. (2014). Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma, 228–229, 142–159. https://doi.org/10.1016/j.geoderma.2013.10.012

    CAS  Article  Google Scholar 

  57. Shaimukhametov, M. (1993). On determination technique of absorbed Ca and Mg in chernozem soils. Pochvovedenie, 12, 105–111. (in Russian).

    Google Scholar 

  58. Singh, U. K., & Kumar, B. (2017). Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere, 174, 183–199. https://doi.org/10.1016/j.chemosphere.2017.01.103

    CAS  Article  Google Scholar 

  59. Skála, J., Vácha, R., Hofman, J., Horváthová, V., Sáňka, M., & Čechmánková, J. (2017). Spatial differentiation of ecosystem risks of soil pollution in floodplain areas of the Czech Republic. Soil and Water Research. https://doi.org/10.17221/53/2016-SWR

    Article  Google Scholar 

  60. Soil Survey Staff. (2011). Soil survey laboratory information manual. Soil survey investigations report No. 45, version 2.0. Linkoln: Department of Agriculture, Natural Resources Conservation Service.

  61. Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova, E., Gülser, C., et al. (2020). PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination. Eurasian Journal of Soil Science. https://doi.org/10.18393/ejss.734607

    Article  Google Scholar 

  62. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473

    CAS  Article  Google Scholar 

  63. Tkachenko, A. N., Tkachenko, O. V., & Lychagin, M. Y. (2016). Content of heavy metals in water objects of the Delta of Don: Seasonal and spatial dynamics. Geologiya, Geografiya i Globalnaya Energiya, 2(61), 76–84. (in Russian).

    Article  Google Scholar 

  64. Tkachenko, A. N., Tkachenko, O. V., Lychagin, M. Y., & Kasimov, N. S. (2017). Heavy metal flows in aquatic systems of the Don and Kuban river deltas. Doklady Earth Sciences, 474, 587–590. https://doi.org/10.1134/S1028334X1705018X

    CAS  Article  Google Scholar 

  65. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a Pollution Index. Helgoländer Meeresuntersuchungen, 33(1980), 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  66. Vorobyova, L. A. (2006). Theory and practice of chemical analysis of soils. GEOS. (in Russian).

    Google Scholar 

  67. Wang, J., Gao, B., Yin, S., Xu, D., Liu, L., & Li, Y. (2019). simultaneous health risk assessment of potentially toxic elements in soils and sediments of the Guishui River Basin, Beijing. International Journal of Environmental Research and Public Health, 16(22), 4539. https://doi.org/10.3390/ijerph16224539

    CAS  Article  Google Scholar 

  68. Yan, X., Liu, M., Zhong, J., Guo, J., & Wu, W. (2018). How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta North China. Sustainability, 10, 338. https://doi.org/10.3390/su10020338

    CAS  Article  Google Scholar 

  69. Zhou, W., Han, G., Liu, M., Song, C., Li, X., & Malem, F. (2020). Vertical distribution and controlling factors exploration of Sc, V Co, Ni, Mo and Ba in six soil profiles of the Mun River Basin, Northeast Thailand. International Journal of Environmental Research and Public Health, 17(5), 1745. https://doi.org/10.3390/ijerph17051745

    CAS  Article  Google Scholar 

  70. Zhuang, S., & Lu, X. (2020). Environmental risk evaluation and source identification of heavy metal(loid)s in agricultural soil of Shangdan Valley Northwest China. Sustainability, 12(14), 5806. https://doi.org/10.3390/su12145806

    CAS  Article  Google Scholar 

Download references

Funding

The reported study was funded by Russian Science Foundation, Project No. 20–14-00317.

Author information

Affiliations

Authors

Contributions

TM: supervised the whole research, EK: composed the main chapters of the manuscript, DN, MV, IZ: performed the detailed field study and soil sampling, SM, TB, SS: performed the analytical works, EK, DN, SM, AM, SS: performed statistical evaluation, contributed with several paragraphs in chapters Results and Discussion, prepared the formal shape of the manuscript.

Corresponding author

Correspondence to Elizaveta Konstantinova.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E., Minkina, T., Nevidomskaya, D. et al. Potentially toxic elements in surface soils of the Lower Don floodplain and the Taganrog Bay coast: sources, spatial distribution and pollution assessment. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-021-01019-5

Download citation

Keywords

  • Trace elements
  • Heavy metals
  • Fluvisols
  • Geochemical threshold
  • Pollution index
  • Southern Russia