Skip to main content

Advertisement

Log in

Assessment of risk from lead intake in mining areas: proposal of indicators

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study discusses an estimate of the risk associated with the intake of soil contaminated by lead, based on the nature of the source, through a detailed study of the parameters that can influence the bioaccessibility of the element from soil intake. Statistical variables that are related to the solubility and bioavailability of lead are used for this purpose. This includes considering the values of pH, electrical conductivity, particle size, mineralogical composition and the bioaccessibility/bioasimilability of lead. Obtaining an algorithm, represented by different probability distributions of the parameters considered, needs a thorough knowledge of the source materials, which may allow estimating/evaluating the intake health risk provided by the concentration of the metal present. The selected materials are from sites affected by mining activities in the Region of Murcia (SE of Spain) and soils in nearby areas, using a total of 186 samples. Soil samples, once screened and homogenized, were parameterized by determining pH, electrical conductivity, granulometry, both total and water-extractable Pb content. Oral bioaccessibility tests were also performed, and a detailed mineralogical analysis by X-ray diffraction was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

adapted from Brookins, 1988)

Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Yes, data and material are available.

References

  • Abrahams, P. W. (2012). Involuntary soil ingestion and geophagia: A source and sink of mineral nutrients and potentially harmful elements to consumers of earth materials. Applied Geochemistry, 27, 954–968.

    Article  CAS  Google Scholar 

  • ATSDR, Agency for Toxic Substances and Disease Registry. (2007). Toxicological profile for arsenic. Draft for Public Comment. Atlanta: US Department of Health and Human. Retrieved February, 2020, from http://www.atsdr.cdc.gov/toxprofiles/tp2.html

  • BOE. (2005). Real Decreto 9/2005, de 14 de enero, por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados in Spanish Official Bulletin (BOE). 15, 18/01/2005.

  • Bright, D. A., Richardson, G. M., & y Dodd, M. (2006). Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: A discussion of soil particle size and contaminant partitioning in soil. Human and Ecological Risk Assessment, 12, 591–605.

  • Brookins, D. G. (1988). Eh-pH atlas of Eh-pH diagrams. Springer. https://doi.org/10.1007/978-3-642-73093-1

    Book  Google Scholar 

  • CalEPA Department of Toxic Substances Control. (2007). Leadspread 7, DTSC Lead Risk Assessment Spreadsheet. U.S. Environmental Protection Agency (U.S. EPA) Technical Review Workgroup for Lead 2005. Adult Lead Committee.

  • Doyi, I. N. Y., FayeIsley, C., Sharifi, N., Mark, S., & Taylor, P. (2019). Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environment International, 133, 105–125. https://doi.org/10.1016/j.envint.2019105125

    Article  Google Scholar 

  • EU. (2006). Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the management of waste from extractive industries and amending Directive 2004/35/EC Statement by the European Parliament, the Council and the Commission.

  • EU. (2018). Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste.

  • European Commission. Environment drinking water. (2018). Retrieved February, 2020, from http://ec.europa.eu/environment/water/water-drink/reporting_en.html

  • EPA/540/1-89/002. (1989). Risk assessment guidance for superfund volume I. Human Health Evaluation Manual (Part A)

  • EPA 120/R-07/001 March, 2007 Framework for Metals Risk Assessment. Office of the Science Advisor. Risk Assessment Forum U.S. Environmental Protection Agency Washington, DC 20460. https://www.epa.gov/sites/production/files/2013-09/documents/metals-risk-assessment-final.pdf

  • EPA/600/R-090/052F. (2011). Exposure factors handbook. Volume I General Factors

  • Ferrara, A., Kosmas, C., Salvati, L., Padula, A., Mancino, G., & Nolè, A. (2020). Updating the MEDALUS-ESA framework for worldwide land degradation and desertification assessment. Land Degradation and Development. https://doi.org/10.1002/ldr.3559

    Article  Google Scholar 

  • de Gruijter, J. J., Walvoort, D. J. J., & Bragato, G. (2011). Application of fuzzy logic to Boolean models for digital soil assessment. Geoderma, 166, 15–33.

    Article  Google Scholar 

  • Guney, M., Zagury, G. J., Dogan, N., & y Onay, T. T. (2010). Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. Journal of Hazardous Materials, 182, 656–664.

  • IRIS, Integrated Risk Information System. (2013). Retrieved February, 2020, from http://www.epa.gov/reg3hscd/risk/human/rb-concentration_table/Generic_Tables/docs/ressoil_sl_table_run_NOV2013.pdf

  • Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Rizwanul Haq, Q. M. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16, 29592–29630. https://doi.org/10.3390/ijms161226183

    Article  CAS  Google Scholar 

  • JCPDS, Joint Committee on Powder Diffraction Standard. (1980). Mineral Powder Difraction File. Search Manual. J.C.P.D.S. 484 pp.

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Samson, L., & Naidu, R. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 69, 961–966.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed., p. 411). CRC Press Inc.

    Book  Google Scholar 

  • Kabata-Pendias, A., & Sadursky, W. (2008). Elements and their compounds in the environment: Occurrence. Analysis and Biological Relevance, Second Edition.

  • Karna, R. R., Noerpel, M., Betts, A. R., & Scheckel, K. G. (2017). Lead and arsenic bioaccessibility and speciation as a function of soil particle size. Journal of Environmental Quality., 46, 1225–1235. https://doi.org/10.2134/jeq2016.10.0387

    Article  CAS  Google Scholar 

  • Karna, R. R., Noerpel, M. R., Nelson, C., Brittany, E., Herbin-Davis, K., Diamond, G., Bradham, K., Thomas, D. J., & Scheckel, K. G. (2020). Bioavailable soil Pb minimized by in situ transformation to plumbojarosite. PNAS. https://doi.org/10.1073/pnas.2020315117

    Article  Google Scholar 

  • Kaufmann, M., Tobias, S., & Schulin, R. (2009). Quality evaluation of restored soils with a fuzzy logic expert system. Geoderma, 151, 290–302.

    Article  Google Scholar 

  • Kelley, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Battelle Press, 124 pp.

  • Kientz, K., Jiménez, B. D., Pérez, L., & Rodríguez-Sierra, C. J. (2003). In vitro bioaccessibility of metals in soils from a superfund site in Puerto Rico. Bulletin of Environment Contamination and Toxicology, 70, 927–934.

    Article  CAS  Google Scholar 

  • Lara, R. H., Briones, R., Monroy, M., Mullet, M., Humbert, M., Dossot, M., Naja, G. M., & Cruz, R. (2011). Galena weathering under simulated calcareous soil conditions. Science of the Total Environment, 409(19), 3971–3979.

    CAS  Google Scholar 

  • Lee, Y. W., Bogardi, I., & Stansbury, J. (1991). Fuzzy decision making in dredged-material management. Journal of Environmental Engineering, 117, 614–630.

    Article  CAS  Google Scholar 

  • López García, J., Lunar, R. & Oyarzun, R. 1988. Silver and lead mineralogy in gossan type gossan type deposits of Sierra de Cartagena (S.E. Spain). Transactions-Institution of Mining and Metallurgy. (Section B: Applied earth science) 97: 82–88.

  • Luo, X. S., Ding, J., Xu, B., Wang, I. J., Li, H. B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment., 424, 88–96. https://doi.org/10.1016/j.scitotenv.2012.02.053

    Article  CAS  Google Scholar 

  • Martín, D. (2018). Qualitative, quantitative and microtextural powder X-ray diffraction analysis. Retrieved February, 2020, from http://www.xpowder.com/

  • Martínez-Sánchez, M. J., & Pérez-Sirvent, C. (2008). Caracterización y Análisis de Riesgos de los materiales de la Bahía de Portmán. Informe técnico privado. Universidad de Murcia-Ministerio de Medio Ambiente, y Medio Rural y Marino-TRAGSA.

  • Martínez-Sánchez, M. J., Martínez López, S., Martínez Martínez, L. B., & Pérez Sirvent, C. (2013). Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone. Journal of Environmental Management, 116, 10–17.

    Article  Google Scholar 

  • Meunier, L., Koch, I., & Reimer, K. J. (2011). Effects of organic matter and ageing on the bioacceseibility of arsenic. Environmental Pollution, 159, 2530–2536.

    Article  CAS  Google Scholar 

  • Mohammadzadeh, M., Basu, O. D., & Herrera, J. E. (2015). Impact of water chemistry on lead carbonate dissolution in drinking water distribution systems. Journal of Water Resource and Protection, 7, 389–397. https://doi.org/10.4236/jwarp.2015.75031

    Article  CAS  Google Scholar 

  • Navarro-Hervás, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., & Marimón, J. (2006). Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere, 63(3), 484–489.

    Article  Google Scholar 

  • Pérez-Sirvent, C., García-Lorenzo, M. L., Hernández-Pérez, C., & Martínez-Sánchez, M. J. (2018). Assessment of potentially toxic element contamination in soils from Portman Bay (SE, Spain). Journal of Soils and Sediments, 18(6), 2248–2258.

    Article  Google Scholar 

  • Pérez-Sirvent, C., Hernández-Pérez, C., Martínez-Sánchez, M. J., García-Lorenzo, M. L., & Bech, J. (2016). Geochemical characterisation of surface waters, topsoils and efflorescences in a historic metal-mining area in Spain. Journal of Soils and Sediments, 16, 1238–1252.

    Article  Google Scholar 

  • Romero, F. M., Villalobos, M., Aguirre, R., & Gutierrez, M. E. (2008). Solid-phase control on lead bioaccessibility in smelter-impacted soils. Archives of Environmental Contamination and Toxicology, 55, 566–575. https://doi.org/10.1007/s00244-008-9152-3

    Article  CAS  Google Scholar 

  • Root, R. A., Hayes, S. M., Hammond, C. M., Maier, R. M., & Chorover, J. (2015). Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Applied Geochemistry, 62, 131–149.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., & Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Sanderson, P., Naidu, R., & Bolan, N. (2016). The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. Journal of Environmental Management, 170, 123–130.

    Article  CAS  Google Scholar 

  • Schoof, R. A. (2003). Guide for Incorporating Bioavailability Adjustments into human health and ecological risk assessments at U. S. Navy and Marine Corps Facilities. Part 2: Technical Background Document for Assessing Metals Bioavailability. From 2000 Navy Edition, prepared by Battelle & Exponent. https://usaphcapps.amedd.army.mil/erawg/DoD%20Metals%20Bioavailability%20Guide.pdf

  • Seim, G. L., Ahn, C. I., Bodis, M. S., Luwedde, F., Miller, D. D., Hillier, S., Tako, E., Glahn, R. P., & Young, S. L. (2017). Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model. Journal of Environmental Quality, 46, 1225–1235.

    Article  Google Scholar 

  • Spanish Royal Decree 140/2003, in which the criteria for water quality are established. BOE-A-2003-3596.

  • Straub, D. (2005). Natural hazards risk assessment using Bayesian networks. In Augusti, G., G. I. Schueller, & M. Ciampoli (Eds.) Proc. ICOSSAR, proceedings: "Safety and reliability of engineering systems and structures". Millpress. CD rom, ISBN 90 5966 040 4

  • Sun, H., Alexander, J., Gove, B., & Koch, M. (2015). Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application. Journal of Contaminant Hydrology, 180, 2–24. https://doi.org/10.1016/j.jconhyd.2015.07.002

    Article  CAS  Google Scholar 

  • Takeno, N. (2005) Intercomparison of thermodynamic databases. Geological Survey of Japan Open File Report No.419. National Institute of Advanced Industrial Science and Technology. Research Center for Deep Geological Environments.

  • UNE-EN 12457-1:2003. (2003). Characterisation of waste—Leaching—Compliance.

  • U.S. EPA. (1989). Risk assessment guidance for superfund. Washington, DC: United States Environmental Protection Agency EPA. http://www.epa.gov/oswer/riskassessment/ragsa/index.htm.

  • U.S. EPA, RAGS. (2004). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part E, Supplemental Guidance for Dermal Risk Assessment) EPA/540/R/99/005 OSWER 9285.7-02EP PB99-963312.

  • U.S. EPA. (2007). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. OSWER 9285.7-80. Disponible en: http://www.epa.gov/superfund/bioavailability/bio_guidance.pdf

  • U.S.EPA. (2009). Update of the adult lead methodology’s default baseline blood lead concentration and geometric standard deviation parameters. Prepared by the Lead Committee of the Technical Review Workgroup for Metals And Asbestos Office Of Superfund Remediation And Technology Innovation. OSWER 9200.2-82.

  • Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: A review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  Google Scholar 

  • Wilson, R., Jones-Otazo, H., Petrovic, S., Mitchell, I., Bonvalot, Y., Williams, D., & Richardson, G. (2013). Revisiting dust and soil ingestion rates based on hand-to-mouth transfer. Human and Ecological Risk Assessment., 19(1), 158–188. https://doi.org/10.1080/10807039.2012.685807

    Article  CAS  Google Scholar 

  • World Health Organization. (1993). Guidelines for drinking-water quality: volume 1: recommendations, 2nd edn. World Health Organization. https://apps.who.int/iris/handle/10665/259956

  • WHO (World Health Organization). (2020). https://www.who.int/es/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 1 Dec 2020.

  • Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Pérez-Sirvent.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Yes.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Sirvent, C., Martínez-Martínez, L.B., Martínez-Lopez, S. et al. Assessment of risk from lead intake in mining areas: proposal of indicators. Environ Geochem Health 44, 447–463 (2022). https://doi.org/10.1007/s10653-021-00995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00995-y

Keywords

Navigation