Alekseev, A. I. (2015). Complex processing of Apatite-nepheline ores based on the creation of closed technological schemes. Journal of Mining Institute, 215, 75–82.
Google Scholar
Bekbaev, R. (2017). Reclamation efficiency of phosphogypsum on irrigated lands in the Asa-Talas river basin. International Agricultural Journal, 1, 5–11.
Google Scholar
Belyuchenko, I. S., & Antonenko, D. A. (2015). Influence of complex compost on aggregate composition and water-air properties of ordinary chernozem. Soil Science, 7, 858–864.
Google Scholar
Belyuchenko, I. S., Dobrydnev, E. P., Gukalov, V. N. et al. (2011). A method for improving the agrophysical properties of the soil. Patent RU2423812, publ. 07.20.2011.
Belyuchenko, I. S., Dobrydnev, E. P., Muravyov, E. I., et al. (2008). The use of phosphogypsum for the reclamation of oil-contaminated soils. Proceedings of KubSAU, 3, 72–77.
Google Scholar
Belyuchenko, I. S., Melnik, O. A., Petukh, Y. Y., et al. (2014). A method for reclamation of agricultural land. Patent RU2516468, publ. 05.20.2014.
Belyuchenko, I. S., & Muravyov, E. I. (2009). The influence of industrial and agricultural waste on the physical and chemical properties of soils. Ecological Bulletin of the North Caucasus, 5(1), 84–86.
Google Scholar
Dobrydnev, E. P., & Loktionov, MYu. (2013). The main results of the study of the agroecological efficiency of phosphogypsum in agriculture in the Krasnodar Territory. Fertility, 1, 7–9.
Google Scholar
Filippova, T. E. (2002). A method for increasing soil fertility. Patent RU2178964, publ. 10.02.2002.
Gezer, F., Turhan, S., Uğur, F. A., et al. (2012). Natural radionuclide content of disposed phosphogypsum as TENORM produced from phosphorus fertilizer industry in Turkey. Annals of Nuclear Energy, 50, 33–37.
CAS
Article
Google Scholar
Hilton, J. (2010). Phosphogypsum (PG): Uses and current handling practices worldwide. 25th Annual Lakeland Regional Phosphate Conference, Lakeland, USA.
Karapetian, K., & Dzhevaga, N. (2017a). Modern technologies of complex processing of phosphates. ARPN Journal of Engineering and Applied Sciences, 12(15), 4588–4594.
CAS
Google Scholar
Karapetian, K., & Dzhevaga, N. (2017b). Technology of processing of apatites in the production of fused phosphates as modern highly effective fertilizers. International Multidisciplinary Scientific Geoconference SGEM. https://doi.org/10.5593/sgem2017/51/S20.027
Article
Google Scholar
Kizinek, S. V., & Loktionov, MYu. (2013). The effectiveness of various forms of calcium-containing fertilizers in rice cultivation. Fertility, 1, 14–16.
Google Scholar
Kolesnikov, S. I., Rotina, E. N., & Kazeev, K. S. (2013). Technology of evaluation methods of soil remediation effectiveness according to biological indicators. Middle East Journal of Scientific Research, 17(7), 914–918.
CAS
Google Scholar
Korobanova, T. N. (2015). The monitoring of dangerous geodynamic processes during the dump’s formation in Balakovo («Apatit»). MinIng Informational and Analytical Bulletin (scientific and Technical Journal), 4, 405–408.
Google Scholar
Kovyazin, V. F., Martynov, A. N., & Kuznetsov, E. N. (2016). The state of soils in green spaces of St. Petersburg. Proceedings of higher educational institutions. Forest Journal, 4, 9. https://doi.org/10.17238/issn0536-1036.2016.4.9
CAS
Article
Google Scholar
Meshcheryakov, Y. G. & Fedorov, S. V. (2007). Industrial processing of phosphogypsum. Saint Petersburg: Stroyizdat SPb.
Molkov, A. A., Dergunov, Yu. I., & Suchkov, V. P. (2006). Phosphogypsum processing method. Bulletin of the Chelyabinsk Scientific Center, 4, 59–63.
Google Scholar
Oxford, R.E. (1992). Granulated nitrogen-phosphorus-potassium-sulfur fertilizer from waste gypsum slurry. Patent US5158594, publ. 27.10.1992.
Pashkevich, M. A., Bech, J., Matveeva, V. A., & Alekseenko, A. V. (2020). Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg. Journal of Mining Institute, 241, 125. https://doi.org/10.31897/PMI.2020.1.125
Article
Google Scholar
Pashkevich, M. A., Petrova, T. A., & Rudzisha, E. (2019). Lignin sludge application for forest land reclamation: feasibility assessment. Journal of Mining Institute, 235, 106. https://doi.org/10.31897/pmi.2019.1.106
Article
Google Scholar
Petukh, YuYu., & Gukalov, V. V. (2011). Effect of phosphogypsum on the composition of soil mesofauna in winter wheat crops. Ecological Bulletin of the North Caucasus, 5(2), 66–69.
Google Scholar
Ponomareva, Yu. V., & Belyuchenko, I. S. (2005). Effect of phosphogypsum on soil properties, germination of winter wheat seeds. Environmental Problems of the Kuban, 27, 184–192.
Google Scholar
Ren, Z. (2009). Phosphogypsum sustained-controlled compound fertilizer. Patent CN101434495, publ. 20.05.2009.
Sheujen, A. K. & Bondareva T. N. (2015). The use of phosphogypsum neutralized in rice crops as a multicomponent fertilizer. Communication I. Polythematic network electronic scientific journal of the Kuban State Agrarian University (Scientific journal KubSAU). http://ej.kubagro.ru/2015/09/pdf/20.pdf. Accessed 03 August 2020.
Shilnikov, I. A., & Akanova, N. I. (2013). The state and efficiency of chemical soil reclamation in agriculture in the Russian Federation of various forms of calcium-containing fertilizers in rice cultivation. Fertility, 1, 9–13.
Google Scholar
Strizhenok, A., & Korelskiy, D. (2016). Assessment of the state of soil-vegetation complexes exposed to powder-gas emissions of nonferrous metallurgy enterprises. Journal of Ecological Engineering, 17, 25. https://doi.org/10.12911/22998993/64562
Article
Google Scholar
Strizhenok, A., & Tcvetkov, P. (2017). Ecology-economical assessment of new reclamation method for currently working technogenic massifs. Journal of Ecological Engineering, 18, 58. https://doi.org/10.12911/22998993/66251
Article
Google Scholar
Suresh, P.O., Nirmit, S., Ajay, J. et al. (2020). Process for preparing granulated phosphogypsum fertilizer composition. Patent IN201921007123, publ. 28.08.2020.
Yakovleva, A. S., Kaniskin, M. A., & Terekhova, V. A. (2013). Environmental assessment of soils exposed to phosphogypsum. Soil Science, 6, 737–743.
Google Scholar
Yan, L., Chen, F., Chen, L. (2014). Sulfur-containing composite microbial fertilizer and production method thereof. Patent CN103570435, publ. 12.02.2014.
Yurkova, R. E. (2012). Methods of inactivation of heavy metals and restoration of soil fertility of irrigated lands. Scientific Journal of the Russian Research Institute of Melioration Problems, 1, 1–12.
Google Scholar
Zelenova A. N., Nazarov, V. A., Sineltsev, A. A. (2017). A method of obtaining a complex organomineral fertilizer based on natural aluminosilicates. Patent RU2607600, publ. 01.10.2017.