Skip to main content

Advertisement

Log in

Estimating dynamic population served by wastewater treatment plants using location-based services data

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Wastewater-based epidemiology is a useful approach to estimate population-level exposure to a wide range of substances (e.g., drugs, chemicals, biological agents) by wastewater analysis. An important uncertainty in population normalized loads generated is related to the size and variability of the actual population served by wastewater treatment plants (WWTPs). Here, we built a population model using location-based services (LBS) data to estimate dynamic consumption of illicit drugs. First, the LBS data from Tencent Location Big Data and resident population were used to train a linear population model for estimating population (r2 = 0.92). Then, the spatiotemporal accuracy of the population model was validated. In terms of temporal accuracy, we compared the model-based population with the time-aligned ammonia nitrogen (NH4-N) population within the WWTP of SEG, showing a mean squared error of < 10%. In terms of spatial accuracy, we estimated the model-based population of 42 WWTPs in Dalian and compared it with the NH4-N and design population, indicating good consistency overall (5% less than NH4-N and 4% less than design). Furthermore, methamphetamine consumption and prevalence based on the model were calculated with an average of 111 mg/day/1000 inhabitants and 0.24%, respectively, and dynamically displayed on a visualization system for real-time monitoring. Our study provided a dynamic and accurate population for estimating the population-level use of illicit drugs, much improving the temporal and spatial trend analysis of drug use. Furthermore, accurate information on drug use could be used to assess population health risks in a community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and material are available from the corresponding author by request.

Code availability

The codes are available from the corresponding author by request.

References

  • Bachir, D., Gauthier, V., El Yacoubi, M., Khodabandelou, G., & Ieee (2017). Using mobile phone data analysis for the estimation of daily urban dynamics. In 2017 Ieee 20th International conference on intelligent transportation systems (IEEE international conference on intelligent transportation systems-ITSC). New York: Ieee.

  • Baz-Lomba, J. A., Di Ruscio, F., Arnador, A., Reid, M., & Thomas, K. V. (2019). Assessing alternative population size proxies in a wastewater catchment area using mobile device data. Environmental Science & Technology, 53(4), 1994–2001. https://doi.org/10.1021/acs.est.8b05389

    Article  CAS  Google Scholar 

  • Castiglioni, S., Bijlsma, L., Covaci, A., Emke, E., Hernandez, F., Reid, M., et al. (2013). Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers. Environmental Science & Technology, 47(3), 1452–1460. https://doi.org/10.1021/es302722f

    Article  CAS  Google Scholar 

  • Chen, C., Kostakis, C., Gerber, J. P., Tscharke, B. J., Irvine, R. J., & White, J. M. (2014). Towards finding a population biomarker for wastewater epidemiology studies. Science of the Total Environment, 487, 621–628. https://doi.org/10.1016/j.scitotenv.2013.11.075

    Article  CAS  Google Scholar 

  • Choi, P. M., Tscharke, B. J., Donner, E., O’Brien, J. W., Grant, S. C., Kaserzon, S. L., et al. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. Trac-Trends in Analytical Chemistry, 105, 453–469. https://doi.org/10.1016/j.trac.2018.06.004

    Article  CAS  Google Scholar 

  • Daughton, C. G. (2012). Real-time estimation of small-area populations with human biomarkers in sewage. Science of the Total Environment, 414, 6–21. https://doi.org/10.1016/j.scitotenv.2011.11.015

    Article  CAS  Google Scholar 

  • Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., et al. (2014). Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 111(45), 15888–15893. https://doi.org/10.1073/pnas.1408439111

    Article  CAS  Google Scholar 

  • Douglass, R. W., Meyer, D. A., Ram, M., Rideout, D., & Song, D. J. (2015). High resolution population estimates from telecommunications data. Epj Data Science, 4(1), 13. https://doi.org/10.1140/epjds/s13688-015-0040-6

    Article  Google Scholar 

  • Gracia-Lor, E., Castiglioni, S., Bade, R., Been, F., Castrignano, E., Covaci, A., et al. (2017). Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environment International, 99, 131–150. https://doi.org/10.1016/j.envint.2016.12.016

    Article  CAS  Google Scholar 

  • Keller, V., Fox, K., Rees, H. G., & Young, A. R. (2006). Estimating population served by sewage treatment works from readily available GIS data. Science of the Total Environment, 360(1–3), 319–327. https://doi.org/10.1016/j.scitotenv.2005.08.043

    Article  CAS  Google Scholar 

  • Khodabandelou, G., Gauthier, V., El-Yacoubi, M., Fiore, M., & Ieee (2016). Population estimation from mobile network traffic metadata (2016 Ieee 17th International symposium on a world of wireless, mobile and multimedia networks), New York, Ieee.

  • Lai, F. Y., O’Brien, J. W., Thai, P. K., Hall, W., Chan, G., Bruno, R., et al. (2016). Cocaine, MDMA and methamphetamine residues in wastewater: Consumption trends (2009–2015) in South East, Queensland, Australia. Science of the Total Environment, 568, 803–809. https://doi.org/10.1016/j.scitotenv.2016.05.181

    Article  CAS  Google Scholar 

  • Lai, F. Y., Ort, C., Gartner, C., Carter, S., Prichard, J., Kirkbride, P., et al. (2011). Refining the estimation of illicit drug consumptions from wastewater analysis: Co-analysis of prescription pharmaceuticals and uncertainty assessment. Water Research, 45(15), 4437–4448. https://doi.org/10.1016/j.watres.2011.05.042

    Article  CAS  Google Scholar 

  • Mathieu, C., Rieckermann, J., Berset, J. D., Schurch, S., & Brenneisen, R. (2011). Assessment of total uncertainty in cocaine and benzoylecgonine wastewater load measurements. Water Research, 45(20), 6650–6660. https://doi.org/10.1016/j.watres.2011.09.049

    Article  CAS  Google Scholar 

  • Nyhan, M., Grauwin, S., Britter, R., Misstear, B., McNabola, A., Laden, F., et al. (2016). “Exposure track” the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution. Environmental Science & Technology, 50(17), 9671–9681. https://doi.org/10.1021/acs.est.6b02385

    Article  CAS  Google Scholar 

  • O’Brien, J. W., Thai, P. K., Eaglesham, G., Ort, C., Scheidegger, A., Carter, S., et al. (2014). A model to estimate the population contributing to the wastewater using samples collected on census day. Environmental Science & Technology, 48(1), 517–525. https://doi.org/10.1021/es403251g

    Article  CAS  Google Scholar 

  • Ort, C., Bijlsma, L., Castiglioni, S., Covaci, A., de Voogt, P., Emke, E., et al. (2018). Wastewater analysis for community-wide drugs use assessment. In H. H. Maurer & S. D. Brandt (Eds.), Handbook of experimental pharmacology.Cham: Springer.

    Google Scholar 

  • Pei, W., Zhan, Q. X., Yan, Z. Y., Ge, L. K., Zhang, P., Wang, Z., et al. (2016). Using Monte Carlo simulation to assess uncertainty and variability of methamphetamine use and prevalence from wastewater analysis. International Journal of Drug Policy, 36, 1–7. https://doi.org/10.1016/j.drugpo.2016.06.013

    Article  Google Scholar 

  • Plosz, B. G., Reid, M. J., Borup, M., Langford, K. H., & Thomas, K. V. (2013). Biotransformation kinetics and sorption of cocaine and its metabolites and the factors influencing their estimation in wastewater. Water Research, 47(7), 2129–2140. https://doi.org/10.1016/j.watres.2012.12.034

    Article  CAS  Google Scholar 

  • Rico, M., Andres-Costa, M. J., & Pico, Y. (2017). Estimating population size in wastewater-based epidemiology. Valencia metropolitan area as a case study. Journal of Hazardous Materials, 323, 156–165. https://doi.org/10.1016/j.jhazmat.2016.05.079

    Article  CAS  Google Scholar 

  • Senta, I., Gracia-Lor, E., Borsotti, A., Zuccato, E., & Castiglioni, S. (2015). Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water Research, 74, 23–33. https://doi.org/10.1016/j.watres.2015.02.002

    Article  CAS  Google Scholar 

  • Shao, X. T., Liu, Y. S., Tan, D. Q., Wang, Z., Zheng, X. Y., & Wang, D. G. (2020). Methamphetamine use in typical Chinese cities evaluated by wastewater-based epidemiology. Environmental Science and Pollution Research, 27(8), 8157–8165. https://doi.org/10.1007/s11356-019-07504-w

    Article  CAS  Google Scholar 

  • Thomas, K. V., Amador, A., Baz-Lomba, J. A., & Reid, M. (2017). Use of mobile device data to better estimate dynamic population size for wastewater-based epidemiology. Environmental Science & Technology, 51(19), 11363–11370. https://doi.org/10.1021/acs.est.7b02538

    Article  CAS  Google Scholar 

  • Thomas, K. V., Bijlsma, L., Castiglioni, S., Covaci, A., Emke, E., Grabic, R., et al. (2012). Comparing illicit drug use in 19 European cities through sewage analysis. Science of the Total Environment, 432, 432–439. https://doi.org/10.1016/j.scitotenv.2012.06.069

    Article  CAS  Google Scholar 

  • Tscharke, B. J., O’Brien, J. W., Ort, C., Grant, S., Gerber, C., Bade, R., et al. (2019). Harnessing the power of the census: characterizing wastewater treatment plant catchment populations for wastewater-based epidemiology. Environmental Science & Technology, 53(17), 10303–10311. https://doi.org/10.1021/acs.est.9b03447

    Article  CAS  Google Scholar 

  • UNODC (2018). World Drug Report 2018 vol United Nations Office on Drugs and Crime. https://www.unodc.org/wdr2018/.

  • van Nuijs, A. L. N., Castiglioni, S., Tarcomnicu, I., Postigo, C., de Alda, M. L., Neels, H., et al. (2011). Illicit drug consumption estimations derived from wastewater analysis: A critical review. Science of the Total Environment, 409(19), 3564–3577. https://doi.org/10.1016/j.scitotenv.2010.05.030

    Article  CAS  Google Scholar 

  • van Nuijs, A. L. N., Mougel, J. F., Tarcomnicu, I., Bervoets, L., Blust, R., Jorens, P. G., et al. (2011). Sewage epidemiology–A real-time approach to estimate the consumption of illicit drugs in Brussels. Belgium Environment International, 37(3), 612–621. https://doi.org/10.1016/j.envint.2010.12.006

    Article  CAS  Google Scholar 

  • Zheng, Q. D., Wang, Z., Liu, C. Y., Yan, J. H., Pei, W., Wang, Z., et al. (2019). Applying a population model based on hydrochemical parameters in wastewater-based epidemiology. Science of the Total Environment, 657, 466–475. https://doi.org/10.1016/j.scitotenv.2018.11.426

    Article  CAS  Google Scholar 

  • Zuccato, E., Chiabrando, C., Castiglioni, S., Bagnati, R., & Fanelli, R. (2008). Estimating community drug abuse by wastewater analysis. Environmental Health Perspectives, 116(8), 1027–1032. https://doi.org/10.1289/ehp.11022

    Article  CAS  Google Scholar 

  • Zuccato, E., Chiabrando, C., Castiglioni, S., Calamari, D., Bagnati, R., Schiarea, S., et al. (2005). Cocaine in surface waters: A new evidence-based tool to monitor community drug abuse. Environmental health: A global access science source, 4, 14. https://doi.org/10.1186/1476-069x-4-14

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Dalian Science and Technology Innovation Foundation (2019J13SN123) and the National Key R&D Program of China (2019YFC1407700).

Funding

This study was supported by the Dalian Science and Technology Innovation Foundation (2019J13SN123) and the National Key R&D Program of China (2019YFC1407700).

Author information

Authors and Affiliations

Authors

Contributions

HYu Methodology, Writing—original draft. XTS Writing—review & editing, Supervision,Validation. SYL Formal analysis and investigation. WP Writing—review & editing. XPK Writing—review & editing. ZW Writing—review & editing. DGW Writing—review & editing.

Corresponding author

Correspondence to De-Gao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 629 KB)

Supplementary file2 (DOCX 3749 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Shao, XT., Liu, SY. et al. Estimating dynamic population served by wastewater treatment plants using location-based services data. Environ Geochem Health 43, 4627–4635 (2021). https://doi.org/10.1007/s10653-021-00954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00954-7

Keywords

Navigation