Skip to main content
Log in

Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Gold mining is a significant source of metal(loid)s released into the environment. It is an issue of concern due to the potential adverse health effects associated with exposure to toxic elements. This study aimed to assess the ecological and human health risk caused by heavy metal(loid)s exposure in river sediments in Ponce Enríquez, one of the most important mining sites in Ecuador. Concentrations of As, Cd, Cu, Pb, and Zn were evaluated in 172 sediment samples to determine the Potential ecological risk (RI) and the carcinogenic (CR) and non-carcinogenic risk (HQ). The human exposure to polluted sediments during recreational activities was computed using Bayesian probabilistic models. Residents were randomly surveyed to adjust the risk models to the specific population data. More than 68% of the sampling stations pose a severe As and Cd ecological risk index (\(E_{{\text{r}}}^{i}\) > 320). Likewise, residents exposed to river sediments showed a non-acceptable carcinogenic risk by incidental ingestion, being As the primary contributor to overall cancer in both children and adults receptors. Moreover, non-carcinogenic risk through the incidental ingestion of sediments was above the safe limit for children. This is the first study conducted in a mining region in Ecuador that reveals the severe levels of ecological and human health risk to which the population is exposed. These results can be applied as a baseline to develop public health strategies to monitor and reduce the health hazards of the residents of mining communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adewumi, A. J., & Laniyan, T. A. (2020). Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area, Northwest Nigeria. Science of the Total Environment, 718, 137235. https://doi.org/10.1016/j.scitotenv.2020.137235

    Article  CAS  Google Scholar 

  • Aguilar, A., Peña, E., Vitvar, T., Mahamud, M. M., & Menéndez-Aguado, J. M. (2019). A multi-index analysis approach to heavy metal pollution assessment in river sediments in the Ponce Enríquez area, Ecuador. Water . https://doi.org/10.3390/w11030590

    Article  Google Scholar 

  • Appleton, J. D., Williams, T. M., Orbea, H., & Carrasco, M. (2001). Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water, Air, and Soil Pollution. https://doi.org/10.1023/A:1011965430757

    Article  Google Scholar 

  • Arisekar, U., Jeya Shakila, R., Shalini, R., & Jeyasekaran, G. (2020). Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2020.111496

    Article  Google Scholar 

  • Barbieri, M., Sappa, G., & Nigro, A. (2018). Soil pollution: Anthropogenic versus geogenic contributions over large areas of the Lazio region. Journal of Geochemical Exploration, 195, 78–86. https://doi.org/10.1016/j.gexplo.2017.11.014

    Article  CAS  Google Scholar 

  • Beata, J., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination: A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Borja, T., & Moreno, J. (2015). Estudio para la optimización de un circuito flotacióncianuración de concentrados sulfurosos en la planta de beneficio La López para el procesamiento del mineral de la mina Jerusalén en el cantón Camilo Ponce Enríquez. Escuela Superior Politécnica del Litoral.

  • Carling, G. T., Diaz, X., Ponce, M., Perez, L., Nasimba, L., Pazmino, E., Rudd, A., Merugu, S., Fernandez, D. P., Gale, B. K., & Johnson, W. P. (2013). Particulate and dissolved trace element concentrations in three Southern Ecuador rivers impacted by Artisanal gold mining. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-012-1415-y

    Article  Google Scholar 

  • Chen, M., Li, F., Tao, M., Hu, L., Shi, Y., & Liu, Y. (2019). Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Marine Pollution Bulletin, 146, 893–899. https://doi.org/10.1016/j.marpolbul.2019.07.029

    Article  CAS  Google Scholar 

  • de Souza, E. S., Texeira, R. A., da Costa, H. S. C., Oliveira, F. J., Melo, L. C. A., do Carmo Freitas Faial, K., & Fernandes, A. R. (2017). Assessment of risk to human health from simultaneous exposure to multiple contaminants in an artisanal gold mine in Serra Pelada, Para, Brazil. Science of the Total Environment, 576, 683–695. https://doi.org/10.1016/j.scitotenv.2016.10.133

    Article  CAS  Google Scholar 

  • Emenike, P., Tenene, I., Neris, J. B., Omole, D., Afolayan, O., Okeke, C., & Emenike, I. K. (2020). An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114795

    Article  Google Scholar 

  • Garcia-Ordiales, E., Roqueni, N., Rico, J. M., Cienfuegos, P., Alvarez, R., & Ordonez, A. (2019). Assessment of the toxicity toward Vibrio fischeri in sediments of a mining impacted estuary in the north of Spain. Science of the Total Environment, 660, 826–833. https://doi.org/10.1016/j.scitotenv.2019.01.086

    Article  CAS  Google Scholar 

  • Garrido, A. E., Strosnider, W. H. J., Wilson, R. T., Condori, J., & Nairn, R. W. (2017). Metal-contaminated potato crops and potential human health risk in Bolivian mining highlands. Environmental Geochemistry and Health, 39(3), 681–700. https://doi.org/10.1007/s10653-017-9943-4

    Article  CAS  Google Scholar 

  • Guzman-Martinez, F., Arranz-Gonzalez, J. C., Ortega, M. F., Garcia-Martinez, M. J., & Rodriguez-Gomez, V. (2020). A new ranking scale for assessing leaching potential pollution from abandoned mining wastes based on the Mexican official leaching test. Journal of Environmental Management, 273, 111139. https://doi.org/10.1016/j.jenvman.2020.111139

    Article  CAS  Google Scholar 

  • Hadzi, G. Y., Ayoko, G. A., Essumang, D. K., & Osae, S. K. D. (2019). Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41(6), 2821–2843. https://doi.org/10.1007/s10653-019-00332-4

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • IARC. (1987). Evaluation of the carcinogenic risk for humans. International Agency for Research on Cancer.

  • INHAMI. (2021). Instituto Nacional de Meteorología e Hidrología, Ecuador. Retrieved February 10, 2021, from http://www.serviciometeorologico.gob.ec/

  • INIGEMM. (2013). Diagnóstico de las actividades de beneficio y extracción de las labores mineras, sector minero Ponce Enríquez, Provincia del Azuay. Instituto Nacional de Investigación Geológico Minero Metalúrgico.

  • Iribarren, I., Chacon, E., & De Miguel, E. (2009). A Bayesian approach to probabilistic risk assessment in municipal playgrounds. Archives of Environmental Contamination and Toxicology, 56(1), 165–172. https://doi.org/10.1007/s00244-008-9161-2

    Article  CAS  Google Scholar 

  • Jiménez-Oyola, S., Garcia-Martinez, M. J., Ortega, M. F., Bolonio, D., Rodriguez, C., Esbri, J. M., Llamas, J. F., & Higueras, P. (2020). Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicology and Environmental Safety, 201, 110833. https://doi.org/10.1016/j.ecoenv.2020.110833

    Article  CAS  Google Scholar 

  • Kelly, D. L., & Smith, C. L. (2009). Bayesian inference in probabilistic risk assessment: The current state of the art. Reliability Engineering & System Safety, 94(2), 628–643. https://doi.org/10.1016/j.ress.2008.07.002

    Article  Google Scholar 

  • Kinimo, K. C., Yao, K. M., Marcotte, S., Kouassi, N. G. L. B., & Trokourey, A. (2018). Distribution trends and ecological risks of arsenic and trace metals in wetland sediments around gold mining activities in central-southern and southeastern Côte d’Ivoire. Journal of Geochemical Exploration, 190, 265–280. https://doi.org/10.1016/j.gexplo.2018.03.013

    Article  CAS  Google Scholar 

  • Kolawole, T. O., Olatunji, A. S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria. Journal of Health and Pollution. https://doi.org/10.5696/2156-9614-8.19.180906

    Article  Google Scholar 

  • Kusin, F. M., Awang, N. H. C., Hasan, S. N. M. S., Rahim, H. A. A., Azmin, N., Jusop, S., & Kim, K. W. (2019). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. CATENA. https://doi.org/10.1016/j.catena.2019.104229

    Article  Google Scholar 

  • Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA, 165, 454–464. https://doi.org/10.1016/j.catena.2018.02.029

    Article  CAS  Google Scholar 

  • Leikin, J. B., & Paloucek, F. P. (2007). Poisoning and toxicology handbook. CRC Press. https://doi.org/10.3109/9781420044805

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Loy, J., & Mariño, D. (2016). Estudio de la alteración mineralógica a través del análisis macroscópico y de la Difracción de Rayos X (DRX) de las muestras de las rocas de caja y vetas de Bella Rica - Ponce Enríquez, Provincia del Azuay. Escuela Superior Politécnica del Litoral.

  • MAE-PRASS. (2015). Programa de Reparación Integral de la Zona de Estudio Tenguel - Camilo Ponce Enriquez. (Vol. 1)Ministerio de Ambiente Ecuador.

  • Marrugo-Negrete, J., Vargas-Licona, S., Ruiz-Guzman, J. A., Marrugo-Madrid, S., Bravo, A. G., & Diez, S. (2020). Human health risk of methylmercury from fish consumption at the largest floodplain in Colombia. Environmental Research, 182, 109050. https://doi.org/10.1016/j.envres.2019.109050

    Article  CAS  Google Scholar 

  • McDowell, R. W., Taylor, M. D., & Stevenson, B. A. (2013). Natural background and anthropogenic contributions of cadmium to New Zealand soils. Agriculture, Ecosystems & Environment, 165, 80–87. https://doi.org/10.1016/j.agee.2012.12.011

    Article  CAS  Google Scholar 

  • Ngole-Jeme, V. M., & Fantke, P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE, 12(2), e0172517. https://doi.org/10.1371/journal.pone.0172517

    Article  CAS  Google Scholar 

  • Ogola, J. S., Mitullah, W. V., & Omulo, M. A. (2002). Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya. Environmental Geochemistry and Health, 24, 141–158. https://doi.org/10.1023/A:1014207832471

    Article  CAS  Google Scholar 

  • Olusoji Olujimi, O., Oputu, O., Fatoki, O., Opatoyinbo, O. E., Oladokun Ali, A., & Baruani, J. (2015). Heavy metals speciation and human health risk assessment at an illegal gold mining Site in Igun, Osun State, Nigeria. Journal of Health and Pollution, 5, 8. https://doi.org/10.5696/2156-9614-5-8.19

    Article  Google Scholar 

  • Pavilonis, B., Grassman, J., Johnson, G., Diaz, Y., & Caravanos, J. (2017). Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environmental Research, 154, 1–9. https://doi.org/10.1016/j.envres.2016.12.010

    Article  CAS  Google Scholar 

  • Peña-Carpio, E., & Menendez-Aguado, J. M. (2016). Environmental study of gold mining tailings in the Ponce Enriquez mining area (Ecuador). Dyna, 83(195), 237–245. https://doi.org/10.15446/dyna.v83n195.51745

    Article  CAS  Google Scholar 

  • Peng, C., Cai, Y., Wang, T., Xiao, R., & Chen, W. (2016). Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Scientific Report, 6, 37084. https://doi.org/10.1038/srep37084

    Article  CAS  Google Scholar 

  • Qiao, D., Wang, G., Li, X., Wang, S., & Zhao, Y. (2020). Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere, 248, 125988. https://doi.org/10.1016/j.chemosphere.2020.125988

    Article  CAS  Google Scholar 

  • RAIS. (2020). Risk Assessment Information System (RAIS). U.S. Environmental Protection Agency. Retrieved September 12, 2020, from https://rais.ornl.gov/.

  • Rashid, A., Khan, S., Ayub, M., Sardar, T., Jehan, S., Zahir, S., Khan, M. S., Muhammad, J., Khan, R., Ali, A., & Ullah, H. (2019). Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere, 225, 785–795. https://doi.org/10.1016/j.chemosphere.2019.03.066

    Article  CAS  Google Scholar 

  • SES. (1998). Proyecto de Desarrollo minero y Control Ambiental (PRODEMINCA). Monitoreo ambiental de las áreas mineras en el sur de Ecuador. Quito.

  • Shu, X.-H., Zhang, Q., Lu, G.-N., Yi, X.-Y., & Dang, Z. (2018). Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. International Biodeterioration & Biodegradation, 128, 122–128. https://doi.org/10.1016/j.ibiod.2017.01.012

    Article  CAS  Google Scholar 

  • Sierra, C., Ruíz-Barzola, O., Menéndez, M., Demey, J. R., & Vicente-Villardón, J. L. (2017). Geochemical interactions study in surface river sediments at an artisanal mining area by means of Canonical (MANOVA)-Biplot. Journal of Geochemical Exploration, 175, 72–81. https://doi.org/10.1016/j.gexplo.2017.01.002

    Article  CAS  Google Scholar 

  • Spence, L., & Walden, T. (2001). Risk-Integrated Software for Clean-UPS (RISC4). User’s manual, Spence Engineering, Pleasanton, California/BP Oil International Sunbury, UK

  • Sturtz, S. L., & Gelman, A. U. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software, 12(3), 1–16. https://doi.org/10.18637/jss.v012.i03

    Article  Google Scholar 

  • Sun, Z., Xie, X., Wang, P., Hu, Y., & Cheng, H. (2018). Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Science of the Total Environment, 639, 217–227. https://doi.org/10.1016/j.scitotenv.2018.05.176

    Article  CAS  Google Scholar 

  • Tarras-Wahlberg, N. H., Flachier, A., Fredriksson, G., Lane, S., Lundberg, B., & Sangfors, O. (2000). Environmental impact of small-scale and artisanal gold mining in Southern Ecuador. AMBIO: A Journal of the Human Environment, 29, 8. https://doi.org/10.1579/0044-7447-29.8.484

    Article  Google Scholar 

  • USEPA. (2001). Risk assessment guidance for superfund: Volume III—Part A, process for conducting probabilistic risk assessment. Environmental Protection Agency.

  • USEPA. (2004). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). Environmental Protection Agency.

  • USEPA. (2011). Exposure factors handbook: 2011 Edition. Environmental Protection Agency.

  • USEPA. (2018). Update for chapter 11 of the exposure factors handbook intake of meats, dairy products, and fats. Environmental Protection Agency.

  • Wang, N., Wang, A., Kong, L., & He, M. (2018). Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Science of the Total Environment, 610–611, 167–174. https://doi.org/10.1016/j.scitotenv.2017.07.268

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, R., Fan, L., Chen, T., Bai, Y., Yu, Q., & Liu, Y. (2017). Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere, 174, 613–627. https://doi.org/10.1016/j.chemosphere.2017.01.055

    Article  CAS  Google Scholar 

  • Wu, Y., Zhou, X.-Y., Lei, M., Yang, J., Ma, J., Qiao, P.-W., & Chen, T. (2017). Migration and transformation of arsenic: Contamination control and remediation in realgar mining areas. Applied Geochemistry, 77, 44–51. https://doi.org/10.1016/j.apgeochem.2016.05.012

    Article  CAS  Google Scholar 

  • Yan, B., Xu, D. M., Chen, T., Yan, Z. A., Li, L. L., & Wang, M. H. (2020). Leachability characteristic of heavy metals and associated health risk study in typical copper mining-impacted sediments. Chemosphere, 239, 124748. https://doi.org/10.1016/j.chemosphere.2019.124748

    Article  CAS  Google Scholar 

  • Yang, D., Liu, J., Wang, Q., Hong, H., Zhao, W., Chen, S., Yan, C., & Lu, H. (2019). Geochemical and probabilistic human health risk of chromium in mangrove sediments: A case study in Fujian, China. Chemosphere, 233, 503–511. https://doi.org/10.1016/j.chemosphere.2019.05.245

    Article  CAS  Google Scholar 

  • Yasami, N., Ghaderi, M., & Taghilou, B. (2018). Heavy metal assessment in stream sediments from the rivers passing through the mining area. International Journal of Environmental Science and Technology, 16(8), 4355–4374. https://doi.org/10.1007/s13762-018-1840-6

    Article  CAS  Google Scholar 

  • Zhang, Z., Lu, Y., Li, H., Tu, Y., Liu, B., & Yang, Z. (2018). Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Science of the Total Environment, 645, 235–243. https://doi.org/10.1016/j.scitotenv.2018.07.026

    Article  CAS  Google Scholar 

  • Zheng, L., Zhou, Z., Rao, M., & Sun, Z. (2020). Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China. Environmental Geochemistry and Health, 42(5), 1401–1413. https://doi.org/10.1007/s10653-019-00428-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Washington Pincay, Daniel Falquéz, and Martha Hidalgo for their contribution to sample collection and chemical analyses.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Samantha Jiménez Oyola was involved in conceptualization, methodology, writing—original draft preparation. María Jesús García Martinez was involved in conceptualization, supervision, writing—reviewing and editing. Marcelo F. Ortega contributed to methodology, formal analysis, writing—reviewing and editing. Eduardo Chávez contributed to conceptualization, resources, writing—reviewing and editing. Paola Romero contributed to project administration, resources and reviewing. Iker Garcia-Garizabal was involved in writing—reviewing and editing. David Bolonio was involved in writing—reviewing and editing.

Corresponding author

Correspondence to María-Jesús García-Martínez.

Ethics declarations

Conflict of interest

All authors of this study have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Oyola, S., García-Martínez, MJ., Ortega, M.F. et al. Ecological and probabilistic human health risk assessment of heavy metal(loid)s in river sediments affected by mining activities in Ecuador. Environ Geochem Health 43, 4459–4474 (2021). https://doi.org/10.1007/s10653-021-00935-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00935-w

Keywords

Navigation