Skip to main content

Advertisement

Log in

Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Widespread use of zinc oxide nanoparticles (ZnO-NPs) threatens soil, plants, terrestrial and aquatic animals. Thus, it is essential to explore the fate and behavior of NPs in soil and also its mechanism of interaction with soil microbial biodiversity to maintain soil health and quality to accomplish essential ecosystem services. With this background, the model experiment was conducted in the greenhouse to study the impact of ZnO-NPs on soil taking maize as a test crop. The X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and Particles size analysis of engineered NPs confirmed that the material was ZnO-NPs (particle size—-65.82 nm). The application of ZnO-NPs resulted in a significant decrease in soil pH. Significantly high EC (0.13 dS m−1) was recorded where ZnO-NPs were applied at the rate of 2.5 mg Zn kg−1 soil over control (0.12 dS m−1). A significant increase in soil available phosphorus was observed on applying ZnO-NPs (15.29 mg kg−1 of soil) as compared to control (11.84 mg kg−1 of soil). Maximum soil available Zn (2.09 mg kg−1) was recorded in ZnO-NPs-amended soil (T11) which was significantly higher than control (0.33 mg kg−1) as well as treatments containing conventional zincatic fertilizers. The inhibition rates of dehydrogenase enzyme activity in the presence of 0.5 mg, 1.25 mg and 2.5 mg ZnO-NPs per kg soil were 31.3, 46.2 and 49.7%, respectively. Soil microbial biomass carbon was significantly reduced (103.33 µg g−1 soil) in soils treated with ZnO-NPs over control (111.33 µg g−1 soil). Soil bacterial count was also significantly lesser (12.33 × 105 CFU) in the case where 2.5 mg kg−1 ZnO-NPs were applied as compared to control (21.33 × 105 CFU). The corresponding decrease in fungal and actinomycetes colony count was 24.16, 37.35, 46.15% and 14.59, 17.97, 22.45% with the application of 0.5 mg, 1.25 mg and 2.5 mg ZnO-NPs per kg soil, respectively, as compared to control. Thus, the use of ZnO-NPs resulted in an increase in soil available Zn but inhibited soil microbial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are from our conducted field experiment, and all the methods are used mentioned in the manuscript.

References

  • Ahmed, S., Annu Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272–284.

    Article  CAS  Google Scholar 

  • Auld, D. S. (2001). Zinc coordination sphere in biochemical zinc sites. Bio Metals, 14, 271–313.

    CAS  Google Scholar 

  • Bala, R., Kalia, A., & Dhaliwal, S. G. (2019). Evaluation of efficacy of ZnO nanoparticles as remedial zinc nano fertilizer for rice. Journal of Soil Science and Plant Nutrition, 1, 1–12.

    Google Scholar 

  • Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90(2), 640–646.

    Article  CAS  Google Scholar 

  • Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87(7), 1181–1200.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Boxall, A., Chaudhry, Q., Cinclair, C., Jones, A., Aitken, R., Jefferson, B., & Watts, C. (2007). Current and future predicted environmental exposure to engineered nanoparticles. . Central Science Laboratory.

    Google Scholar 

  • Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., & Ceccanti, B. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environment Contamination and Toxicology, 94(4), 490–505.

    Article  CAS  Google Scholar 

  • Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166–1170.

    Article  CAS  Google Scholar 

  • Connolly, M., Fernández, M., Conde, E., Torrent, F., Navas, J. M., & Fernández-Cruz, M. L. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration ofZnO nanoparticles to rainbow trout. Science of the Total Environment, 551, 334–343.

    Article  Google Scholar 

  • Dinesh, R., Anandaraj, M., Srinivasan, V., & Hamza, S. (2012). Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma, 173, 19–27.

    Article  Google Scholar 

  • Du, W., Yang, J., Peng, Q., Liang, X., & Mao, H. (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227, 109–116.

    Article  CAS  Google Scholar 

  • Du, W. C., Sun, Y. Y., Ji, R., Zhu, J. G., Wu, J. C., & Guo, H. Y. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822–828.

    Article  CAS  Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1–42.

    Article  Google Scholar 

  • Federer, W. T. (1967). Experimental design. . Oxford & IHB Publication Co.

    Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103(3), 626–631.

    Article  CAS  Google Scholar 

  • Gajjar, P., Pettee, B., Britt, D. W., Huang, W., Johnson, W. P., & Anderson, A. J. (2009). Antimicrobial activities of commercial nanoparticles against an environmental soil microbe Pseudomonas PutidaKt2440. Journal of Biological Engineering, 3(1), 9.

    Article  Google Scholar 

  • Garcia-Gomez, C., Babin, M., Obrador, A., Alvarez, J., & Fernandez, M. (2015). Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environmental Science and Pollution Research, 22, 16803–16813.

    Article  CAS  Google Scholar 

  • Gavade, N. L., Kadam, A. N., Gaikwad, Y. B., Dhanavade, M. J., & Garadka, K. M. (2016). Decoration of biogenic AgNPs on template free ZnO nanorods for sunlight driven photocatalytic detoxification of dyes and inhibition of bacteria. Journal of Material Science: Material Electronics, 27, 11080–11091.

    CAS  Google Scholar 

  • Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science and Technology, 45(4), 1659–1664.

    Article  CAS  Google Scholar 

  • Ghosh, M., Sinha, S., Jothiramajayam, M., Jana, A., Nag, A., & Mukherjee, A. (2016). Cytogenotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in-vitro and Swiss albino male mice in-vivo. Food and Chemical Toxicology, 97, 286–296.

    Article  CAS  Google Scholar 

  • Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community FEMA. Microbiol, 37, 112–129.

    CAS  Google Scholar 

  • Handy, R. D., & Shaw, B. J. (2007). Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk and Society, 9(2), 125–144.

    Article  Google Scholar 

  • Hanway, J., & Heidal, H. (1952). Soil analysis methods used in Iowa state college soil testing laboratory. Iowa State College Agricultural Bulleti., 57, 1–13.

    Google Scholar 

  • Hemida, S. K., Omar, S. A., & Abdel-Mallek, A. Y. (1997). Microbial populations and enzyme activities in soil treated with heavy metals. Water, Air, and Soil Pollution, 95, 13–22.

    Article  CAS  Google Scholar 

  • Hoet, P. H. M., Brüske-Hohlfeld, I., & Salata, O. V. (2004). Nanoparticles-known and unknown health risks. Journal of Nanobiotechnology, 2(1), 12.

    Article  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. . Prentice Hall of India Private Limited.

    Google Scholar 

  • Janaki, C., Sailatha, E., & Gunasekaran, S. (2015). Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta: A, 144, 17–22.

    Article  CAS  Google Scholar 

  • Kairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 128, 78–84.

    Article  CAS  Google Scholar 

  • Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15, 1692.

    Article  Google Scholar 

  • Klein, D. A., Loh, T. C., & Gouldind, R. L. (1971). A rapid procedure to evaluate dehydrogenase activity in soil of low organic matter. Soil Biology and Biochemistry, 3, 385–387.

    Article  CAS  Google Scholar 

  • Lead, J. R., & Wilkinson, K. J. (2006). Aquatic colloids and nanoparticles: Current knowledge and future trends. Environmental Chemistry, 3(3), 159–171.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Malea, P., Charitonidou, K., Sperdouli, I., Mylona, Z., & Moustakas, M. (2019). Zinc uptake, photosynthetic efficiency and oxidative stress in the seagrass. Cymodoceanodosa exposed to ZnO nanoparticles. Materials, 12(2101), 1–15.

    Google Scholar 

  • Mandal, N., Datta, S. C., Manjaiah, K. M., Dwivedi, B. S., Kumar, R., & Aggarwal, P. (2019). Zincated nanoclay polymer composites (ZNCPCs): Synthesis, characterization, biodegradation and controlled release behaviour in soil. Polymer-Plastic Technology and Engineering, 57, 1760–1770.

    Article  Google Scholar 

  • Martin, J. P. (1950). Use of acid rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Science, 69, 215–232.

    Article  CAS  Google Scholar 

  • Meshram, J. V., Koli, V. B., Kumbhar, S. G., Phadatare, M. R., & Pawar, S. H. (2017). Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique. Materials Science and Engineering C, 73, 257–266.

    Article  CAS  Google Scholar 

  • Navale, G. R., Thripuranthaka, M., Late, D. J., & Shinde, S. S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnology and Nanomedicine, 3(1), 1033.

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanable, F. S., & Dean, L. A. (1954). Estimate of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular, 9398, 1–9.

    Google Scholar 

  • Pan, J., & Yu, L. (2011). Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering, 37, 1889–1894.

    Article  Google Scholar 

  • Peng, Y. H., Tsai, Y. C., Hsiung, C. E., Lin, Y. H., & Shih, Y. (2017). Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials, 322, 348–356.

    Article  CAS  Google Scholar 

  • Powers, K. W., Brown, S. C., Krishna, V. B., Wasdo, S. C., Moudgil, B. M., & Roberts, S. M. (2006). Research strategies for safety evaluation of nanomaterials. Part vi. Characterization of nanoscale particles for toxicological evaluation. Toxicological Science, 90(2), 296–303.

    Article  CAS  Google Scholar 

  • Puri, A. N. (1930). A new method for estimating total carbonates in soils. Bulletin of the Imperial Institute of Agricultural Research, Pusa, 206, 7–11.

    Google Scholar 

  • Rahman, M. B. A., Zaidan, U. H., Basri, M., Hussein, M. Z., Rahman, R. N. Z. R. A., & Salleh, A. B. (2008). Enzymatic synthesis of methyl adipate ester using lipase from Canidarugosa immobilized on Mg, Zn and Ni of layered double hydroxides. Journal of Molecular Catalysis B: Enzymatic, 50, 33–39.

    Article  Google Scholar 

  • Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan, K., Movsesyan, H., & Barsova, N. (2019). ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry and Health, 42, 147–158.

    Article  Google Scholar 

  • Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., & Nevidomskaya, D. (2017a). Effect of nanoparticles on crops and soil microbial communities. Journal of Soils Sediments, 18, 1–9.

    Google Scholar 

  • Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2017b). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring and Management, 9, 76–84.

    Article  Google Scholar 

  • Rajput, V., Chaplygin, V., Gorovtsov, A., Fedorenko, A., Azarov, A., Chernikova, N., Barakhov, A., Minkina, T., Maksimov, A., Mandzhieva, S., Sushkova, S. (2020a). Assessing the toxicity and accumulation of bulk- and nano-CuO in Hordeum sativum L. Environmental Geochemistry and Health. 1–12.

  • Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., Sushkova, S. (2020b). Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health. 1–26.

  • Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous- mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonolobaL.). Agricultural Research, 2(1), 48–55.

    Article  CAS  Google Scholar 

  • Reddy, K. M., Feris, K., Bel, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90, 213902.

    Article  Google Scholar 

  • Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanism of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials, 6, 2295–2350.

    Article  CAS  Google Scholar 

  • Renella, G., Chaudri, A. M., & Brookes, P. C. (2002). Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biology and Biochemistry, 34, 121–124.

    Article  CAS  Google Scholar 

  • Royal Society and The Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties. https://royalsociety.org/topicspolicy/

  • Schimidt, E. L., & Cadwell, A. C. (1967). Practical manual of soil microbiology: Laboratory methods, soil bulletin. . FAO.

    Google Scholar 

  • Shen, Z., Chen, Z., Hou, Z., Li, T., & Lu, X. (2015). Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Frontiers of Environmental Science and Engineering, 9(5), 912–918.

    Article  CAS  Google Scholar 

  • Simonin, M., Guyonnet, J. P., Martins, J. M., Ginot, M., & Richaume, A. (2015). Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. Journal of Hazardous Materials, 283, 529–535.

    Article  CAS  Google Scholar 

  • Sirelkhatim, A., Shahrom, M., Azman, S., Noor, H. M. K., Chuo, A. L., Siti, K. M. B., Habsah, H., & Dasmawati, M. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Micro-Nano Letters, 7(3), 219–242.

    Article  CAS  Google Scholar 

  • Srivastav, A. K., Kumar, M., Ansari, N. G., Jain, A. K., Shankar, J., Arjaria, N., Jagdale, P., & Singh, D. (2016). A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats: Toxicity study of zinc oxide nanoparticles. Human and Experimental Toxicology, 35(12), 1286–1304.

    Article  CAS  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the determination of available nitrogen in soils. Current Science, 25, 259–260.

    CAS  Google Scholar 

  • Tarafdar, J. C., & Claassen, N. (2003). Organic phosphorus utilization by wheat plants under sterilized condition. Biology and Fertility of Soils, 39, 25–29.

    Article  CAS  Google Scholar 

  • Thornton, H. G. (1922). On the development of standardized agar medium for counting soil bacteria with special regard to the repression of spreading colonies. The Annals of Applied Biology, 2, 241–247.

    Article  Google Scholar 

  • Tourinho, P. S., van Gestel, C. A. M., Lofts, S., Svendsen, C., Soares, A. M. V. M., & Loureiro, S. E. (2012). Metal- based nanoparticles in soil: Fate, behaviour, and effects on soil invertebrates. Environmental Toxicology and Chemistry, 31(8), 1679–1692.

    Article  CAS  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Vaseem, M., Umar, A., & Hahn, Y. B. (2010). ZnO nanoparticles: Growth, properties and applications. In A. Umar & Y.-B. Hahn (Eds.), Metal oxide nanostructures and their applications. (4th ed., pp. 1–36). American Scientific Publishers.

    Google Scholar 

  • Vitosh, M. L., Warncke, D. D., Lucas, R. E. (1994). Secondary and micronutrients for vegetable and field crops. Michigan State University Extension Bulletin, pp E-486.

  • Walkley, A. J., & Black, I. A. (1934). Estimation of organic carbon by chromic acid titration. Methodology of Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., & Shi, J. (2015). Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry, 86, 24–33.

    Article  CAS  Google Scholar 

  • Yuan, L., Lianghuan, W., Chunlei, Y., & Qian, L. V. (2013). Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Journal of the Science of Food and Agriculture, 93, 254–261.

    Article  CAS  Google Scholar 

  • Zhao, L., Peralta-Videa, J. R., Ren, M., Varela-Ramirez, A., Li, C., Hernandez-Viezcas, J. A., Renato, J. A., & Gardea-Torresdey, J. L. (2012). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chemical Engineering Journal, 184, 1–8.

    Article  CAS  Google Scholar 

  • Zhou, X. H., Huang, B. C., Zhou, T., Liu, Y. C., & Shi, H. C. (2015). Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere, 119, 568–576.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Nirmal De, Head of Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, BHU, for his help, support and critical suggestion which were needed for the successful conduction of this experiment. Sincere thanks are given to Prof. Anchal Srivatava, Department of Physics, BHU, Varanasi, for proving facilities essential for dispersion of zinc oxide nanoparticles and Prof. Pralay Maiti, School of Materials Science and Technology, IIT (BHU), Varanasi, for obtaining XRD and FTIR images of the material. The authors of the manuscript (V. Rajput and T. Minkina) would like to acknowledge funding from the Russian Foundation for Basic Research, grant no. 21-77-20089.

Author information

Authors and Affiliations

Authors

Contributions

SKS and YV conceived and designed the study. SKS and YV carried out the experiments. YV and HSJ analyzed the data. All authors contributed to data interpretation. YV, HSJ wrote the manuscript, VDR and TM corrected the final version. SKS provided guidance on the whole study and improved the manuscript. All the authors are equally contributed to the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hanuman Singh Jatav.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All the authors have been agreed to submit it.

Consent to participate

Before the submission of paper, all the authors have given the consent to publish.

Consent to publish

The entire authors have given the consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, Y., Singh, S.K., Jatav, H.S. et al. Interaction of zinc oxide nanoparticles with soil: Insights into the chemical and biological properties. Environ Geochem Health 44, 221–234 (2022). https://doi.org/10.1007/s10653-021-00929-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00929-8

Keywords

Navigation