Skip to main content

Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh

Abstract

Vertical heavy metal profiling reflects the history of the deposition of metals and helps to understand the characteristics of accumulation in various layers of the sediment. Nevertheless, no previous studies in Bangladesh had focused on the vertical distribution of heavy metals in core sediments. In this study, vertical distribution, contamination level and potential ecological risks of six heavy metals (Zn, Cu, Pb, Cr, Ni, Mn) from the core sediment of ship breaking were assessed and compared with the non-ship breaking area of Bangladesh. The concentration (µg/g) of heavy metals in the 0–10 cm (surface), 10–20 cm (middle) and 20–30 cm (bottom) of sediment cores was as follows, respectively: Zn (35.54–100.68, 37.27–258.02, 42.78–66.45); Cu (16.38–75.25, 30.64–92.02, 34.99–52.98); Pb (4.84–132.08, BDL–204.48, BDL–23.51); Cr (14.57–42.13, 25.31–42.71, 15.26–36.34); Ni (4.02–42.23, 4.94–43.70, 4.40–43.13); Mn (198.74–764.16, 257.77–980.50, 255.62–856.44). The heavy metal content of core sediment from the shipbreaking region was substantially higher than that of non-shipbreaking area. Except for Ni, heavy metal content was highest in the middle layer, followed by the upper and lower layers of the sediment core. Contamination exponents such as enrichment factor, contamination factor and geo-accumulation index (Igeo) revealed contamination by Zn, Cu and Pb while potential ecological risk factor (\(E_{r}^{i}\)) and risk index suggested low ecological risk by studied heavy metals except for Pb. Correlation matrix, cluster analysis and principal component analysis indicated that all studied heavy metals could have similar anthropogenic origins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data and materials require to understand the study are presented in the manuscript.

Code availability

Not applicable for this study.

References

  1. Abdullah, H. M., Mahboob, M. G., Banu, M. R., & Seker, D. Z. (2013). Monitoring the drastic growth of ship breaking yards in Sitakunda: a threat to the coastal environment of Bangladesh. Environmental Monitoring and Assessment, 185(5), 3839–3851.

    CAS  Article  Google Scholar 

  2. Afshan, S., Ali, S., Ameen, U. S., Farid, M., Bharwana, S. A., Hannan, F., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences, 2(1), 74–79.

    CAS  Google Scholar 

  3. Ahmadov, M., Humbatov, F., Mammadzada, S., Balayev, V., Ibadov, N., & Ibrahimov, Q. (2020). Assessment of heavy metal pollution in coastal sediments of the western Caspian Sea. Environmental Monitoring and Assessment, 192(8), 1–18.

    Article  CAS  Google Scholar 

  4. Ahmed, A. S. S., Hossain, M. B., Semme, S. A., Babu, S. M. O. F., Hossain, K., & Moniruzzaman, M. (2020). Accumulation of trace elements in selected fish and shellfish species from the largest natural carp fish breeding basin in Asia: a probabilistic human health risk implication. Environmental Science and Pollution Research, 27(30), 37852–37865.

    CAS  Article  Google Scholar 

  5. Ahmed, A. S. S., Sultana, S., Habib, A., Ullah, H., Musa, N., Hossain, M. B., Rahman, M. M., & Sarker, M. S. I. (2019). Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE, 14(10), e0219336.

    CAS  Article  Google Scholar 

  6. Ahmed, M. K., Baki, M. A., Islam, M. S., Kundu, G. K., Habibullah-Al-Mamun, M., Sarkar, S. K., & Hossain, M. M. (2015). Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga Bangladesh. Environmental Science and Pollution Research, 22(20), 15880–15890.

    CAS  Article  Google Scholar 

  7. Ahmed, M. K., Shaheen, N., Islam, M. S., Habibullah-al-Mamun, M., Islam, S., Mohiduzzaman, M., & Bhattacharjee, L. (2015). Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere, 128, 284–292.

    CAS  Article  Google Scholar 

  8. Aktaruzzaman, M., Chowdhury, M. A. Z., Fardous, Z., Alam, M. K., Hossain, M. S., & Fakhruddin, A. N. M. (2014). Ecological risk posed by heavy metals contamination of ship breaking yards in Bangladesh. International Journal of Environmental Research, 8(2), 469–478.

    Google Scholar 

  9. Amin, B., Ismail, A., Arshad, A., Yap, C. K., & Kamarudin, M. S. (2009). Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai Indonesia. Environmental Monitoring and Assessment, 148(1–4), 291–305.

    CAS  Article  Google Scholar 

  10. Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J. A., & Ruíz-Fernández, A. C. (2015). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.

    Article  Google Scholar 

  11. Bhuiyan, M. A. H., Karmaker, S. C., Bodrud-Doza, M., Rakib, M. A., & Saha, B. B. (2020). Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM PMF and GIS methods. Chemosphere, 263, 128339.

    Article  CAS  Google Scholar 

  12. Birch, G. F., & Olmos, M. A. (2008). Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES Journal of Marine Science, 65(8), 1407–1413.

    CAS  Article  Google Scholar 

  13. Chen, C. F., Dong, C. D., & Chen, C. W. (2013). Evaluation of sediment toxicity in Kaohsiung Harbor, Taiwan. Soil and Sediment Contamination: An International Journal, 22(3), 301–314.

    CAS  Article  Google Scholar 

  14. Chen, C. F., Ju, Y. R., Chen, C. W., & Dong, C. D. (2016). Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor Taiwan. Chemosphere, 165, 67–79.

    CAS  Article  Google Scholar 

  15. Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor Taiwan. Chemosphere, 66(8), 1431–1440.

    CAS  Article  Google Scholar 

  16. Chung, C. Y., Chen, J. J., Lee, C. G., Chiu, C. Y., Lai, W. L., & Liao, S. W. (2011). Integrated estuary management for diffused sediment pollution in Dapeng Bay and neighboring rivers (Taiwan). Environmental Monitoring and Assessment, 173(1–4), 499–517.

    CAS  Article  Google Scholar 

  17. Dalman, Ö., Demirak, A., & Balcı, A. (2006). Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the Southeastern Aegean Sea (Turkey) by atomic absorption spectrometry. Food Chemistry, 95(1), 157–162.

    CAS  Article  Google Scholar 

  18. Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhao, D., An, S., & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109.

    CAS  Article  Google Scholar 

  19. Gao, W., Du, Y., Gao, S., Ingels, J., & Wang, D. (2016). Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China. Journal of Soils and Sediments, 16(3), 1093–1108.

    CAS  Article  Google Scholar 

  20. Ghosh, S., Ram, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary India. Marine Pollution Bulletin, 109(1), 539–549.

    CAS  Article  Google Scholar 

  21. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  22. Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  23. Hasan, A. B., Kabir, S., Reza, A. S., Zaman, M. N., Ahsan, A., & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration, 125, 130–137.

    CAS  Article  Google Scholar 

  24. Hossain, M. B., Habib, S. B., Hossain, M. S., Jolly, Y. N., Kamal, A. H. M., Idris, M. H., & Rakib, M. R. J. (2020). Data set on trace metals in surface sediment and water from a sub-tropical estuarine system, Bay of Bengal Bangladesh. Data in Brief, 31, 105911.

    Article  Google Scholar 

  25. Hossain, M. B., Shanta, T. B., Ahmed, A. S., Hossain, M. K., & Semme, S. A. (2019). Baseline study of heavy metal contamination in the Sangu River estuary, Chattogram, Bangladesh. Marine Pollution Bulletin, 140, 255–261.

    CAS  Article  Google Scholar 

  26. Hossain, M. S., Fakhruddin, A. N. M., Chowdhury, M. A. Z., & Gan, S. H. (2016). Impact of ship-breaking activities on the coastal environment of Bangladesh and a management system for its sustainability. Environmental Science and Policy, 60, 84–94.

    CAS  Article  Google Scholar 

  27. Islam, M. A., Al-Mamun, A., Hossain, F., Quraishi, S. B., Naher, K., Khan, R., Das, S., Tamim, U., Hossain, S. M., & Nahid, F. (2017). Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest Bangladesh. Marine Pollution Bulletin, 124(1), 356–366.

    CAS  Article  Google Scholar 

  28. Islam, M. S., Hossain, M. B., Matin, A., & Sarker, M. S. I. (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere, 202, 25–32.

    CAS  Article  Google Scholar 

  29. Kükrer, S., Şeker, S., Abacı, Z. T., & Kutlu, B. (2014). Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan Turkey. Environmental Monitoring and Assessment, 186(6), 3847–3857.

    Article  CAS  Google Scholar 

  30. Kumar, A., Ramanathan, A. L., Prasad, M. B. K., Datta, D., Kumar, M., & Sappal, S. M. (2016). Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014. Environmental Science and Pollution Research, 23(9), 8985–8999.

    CAS  Article  Google Scholar 

  31. Li, F., Fan, Z., Xiao, P., Oh, K., Ma, X., & Hou, W. (2009). Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environmental Geology, 57(8), 1815–1823.

    CAS  Article  Google Scholar 

  32. Liu, B., Hu, K., Jiang, Z., Yang, J., Luo, X., & Liu, A. (2011). Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 62(2), 265–275.

    CAS  Article  Google Scholar 

  33. Looi, L. J., Aris, A. Z., Yusoff, F. M., Isa, N. M., & Haris, H. (2019). Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments. Environmental Geochemistry and Health, 41, 27–42.

    CAS  Article  Google Scholar 

  34. Malvandi, H. (2017). Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments Iran. Marine Pollution Bulletin, 117(1–2), 547–553.

    CAS  Article  Google Scholar 

  35. Martinez, E. A., Moore, B. C., Schaumloffel, J., & Dasgupta, N. (2002). The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Archives of Environmental Contamination and Toxicology, 42(3), 286–291.

    CAS  Article  Google Scholar 

  36. Mohammadi, A., Hajizadeh, Y., Taghipour, H., Mosleh Arani, A., Mokhtari, M., & Fallahzadeh, H. (2018). Assessment of metals in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A preliminary ecological risk assessment and source identification. Human and Ecological Risk Assessment: An International Journal, 24(8), 2070–2087.

    CAS  Article  Google Scholar 

  37. Mohiuddin, K. M., Otomo, K., Ogawa, Y., & Shikazono, N. (2012). Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environmental Monitoring and Assessment, 184(1), 265–279.

    CAS  Article  Google Scholar 

  38. Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79, 778–783.

    Google Scholar 

  39. Nath, B. N., Kunzendorf, H., & Pluger, W. L. (2000). Influence of provenance, weathering, and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, southwest coast of India. Journal of Sedimentary Research, 70(5), 1081–1094.

    CAS  Article  Google Scholar 

  40. Nawrot, N., Wojciechowska, E., Matej-Łukowicz, K., Walkusz-Miotk, J., & Pazdro, K. (2019). Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: a case study of Strzyza Stream. Environmental Geochemistry and Health, 42, 1–17.

    Google Scholar 

  41. Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y., & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu China. Science of the Total Environment, 700, 134509.

    CAS  Article  Google Scholar 

  42. Obhođaš, J., Kutle, A., & Valković, V. (2006). Concentrations of some elements in the coastal sea sediments: bays with marinas. Journal of Radioanalytical and Nuclear Chemistry, 270(1), 75–85.

    Article  CAS  Google Scholar 

  43. Ogundele, L. T., & Ayeku, P. O. (2020). Source apportionment and associated potential ecological risk assessment of heavy metals in coastal marine sediments samples in Ondo, Southwest, Nigeria. Stochastic Environmental Research and Risk Assessment, 34(11), 2013–2022.

    Article  Google Scholar 

  44. Oluyemi, E. A., Feuyit, G., Oyekunle, J. A. O., & Ogunfowokan, A. O. (2008). Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. African Journal of Environmental Science and Technology, 2(5), 89–96.

    Google Scholar 

  45. Ozaki, H., City, F., Ichise, H., Fukushi, K., & Watanabe, I. (2015). A comparative study of the vertical profiles of heavy metal concentration in sediment core samples from the Ainoya pond neighboring Watarase retarding basin and its relation to historic copper mining in Ashio. Environmental Science, 28(1), 3–15.

    Google Scholar 

  46. Rahman, M. S., Hossain, M. B., Babu, S. M. O. F., Rahman, M., Ahmed, A. S. S., Jolly, Y. N., Choudhury, T. R., Begum, B. A., Kabir, J., & Akter, S. (2019). Source of metal contamination in sediment, their ecological risk, and phytoremediation ability of the studied mangrove plants in ship breaking area, Bangladesh. Marine Pollution Bulletin, 141, 137–146.

    CAS  Article  Google Scholar 

  47. Ranjan, R. K., Ramanathan, A. L., Singh, G., & Chidambaram, S. (2008). Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, southeast coast of India. Environmental Monitoring and Assessment, 147(1–3), 389–411.

    CAS  Article  Google Scholar 

  48. Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    CAS  Article  Google Scholar 

  49. Saleem, M., Iqbal, J., & Shah, M. H. (2015). Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—a case study from Mangla Lake, Pakistan. Environmental Nanotechnology, Monitoring and Management, 4, 27–36.

    Article  Google Scholar 

  50. Sayadi, M. H., Sayyed, M. R. G., & Kumar, S. (2010). Short-term accumulative signatures of heavy metals in river bed sediments in the industrial area, Tehran Iran. Environmental Monitoring and Assessment, 162(1–4), 465–473.

    CAS  Article  Google Scholar 

  51. Selvam, S., Venkatramanan, S., Hossain, M. B., Chung, S. Y., Khatibi, R., & Nadiri, A. A. (2020). A study of health risk from accumulation of metals in commercial edible fish species at Tuticorin coasts of southern India. Estuarine, Coastal and Shelf Science, 245, 106929.

    CAS  Article  Google Scholar 

  52. Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: a review. Environmental Research, 137, 246–255.

    CAS  Article  Google Scholar 

  53. Siddique, M. A. M., Mustafa Kamal, A. H., & Aktar, M. (2012). Trace metal concentrations in salt marsh sediments from Bakkhali River estuary, Cox’s Bazar Bangladesh. Zoology and Ecology, 22(3–4), 254–259.

    Article  Google Scholar 

  54. Siddiquee, N. A., Parween, S., Quddus, M. M. A., & Barua, P. (2012). Heavy metal pollution in sediments at ship breaking area of Bangladesh. In Coastal Environments: Focus on Asian Regions (pp. 78–87). Springer, Dordrecht.

  55. Simeonov, V., Massart, D. L., Andreev, G., & Tsakovski, S. (2000). Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’sediments from the Black Sea. Chemosphere, 41(9), 1411–1417.

    CAS  Article  Google Scholar 

  56. Sinex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 3(6), 315–323.

    CAS  Article  Google Scholar 

  57. Singh, V. K., Singh, K. P., & Mohan, D. (2005). Status of heavy metals in water and bed sediments of river Gomti–A tributary of the Ganga river India. Environmental Monitoring and Assessment, 105(1–3), 43–67.

    CAS  Article  Google Scholar 

  58. Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69(10), 1466–1474.

    CAS  Article  Google Scholar 

  59. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    CAS  Article  Google Scholar 

  60. Varol, M., & Şen, B. (2012). Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. CATENA, 92, 1–10.

    CAS  Article  Google Scholar 

  61. Wang, A. J., Kawser, A., Xu, Y. H., Ye, X., Rani, S., & Chen, K. L. (2016). Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong Bangladesh. Springerplus, 5(1), 2079.

    Article  CAS  Google Scholar 

  62. Wang, G., Yinglan, A., Jiang, H., Fu, Q., & Zheng, B. (2015). Modeling the source contribution of heavy metals in surficial sediment and analysis of their historical changes in the vertical sediments of a drinking water reservoir. Journal of Hydrology, 520, 37–51.

    CAS  Article  Google Scholar 

  63. Wang, X., Sun, Y., Li, S., & Wang, H. (2019). Spatial distribution and ecological risk assessment of heavy metals in soil from the Raoyanghe Wetland China. PLoS ONE, 14(8), e0220409.

    CAS  Article  Google Scholar 

  64. Yang, H., Rose, N. L., Battarbee, R. W., & Boyle, J. F. (2002). Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environmental Science and Technology, 36(7), 1383–1388.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bangladesh Council of Scientific and Industrial Research (BCSIR) for providing necessary instrumental facilities for heavy metal analysis. The authors thank As−Ad Ujjaman Nur for his assistance during this study. Insights from anonymous reviewer have greatly improved the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

MBH contributed to conceptualization, design, supervision, visualization, writing–review and editing; UHR done investigation and methodology; MMS contributed to data analysis, writing–original draft, review and editing; MKH helped in methodology and resources.

Corresponding author

Correspondence to Mohammad Belal Hossain.

Ethics declarations

Conflict of interest

The authors have no competing of interest to declare with any others.

Consent to participate

Not Applicable.

Consent to publish before reference in the manuscript

Full consent given.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.B., Runu, U.H., Sarker, M.M. et al. Vertical distribution and contamination assessment of heavy metals in sediment cores of ship breaking area of Bangladesh. Environ Geochem Health 43, 4235–4249 (2021). https://doi.org/10.1007/s10653-021-00919-w

Download citation

Keyword

  • Heavy metals
  • Vertical distributions
  • Contamination
  • Core sediments
  • Ship breaking area