Acosta, J. A., Cano, A. F., Arocena, J. M., Debela, F., & Martínez-Martínez, S. (2009). Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149(1–2), 101–109. https://doi.org/10.1016/j.geoderma.2008.11.034.
CAS
Article
Google Scholar
Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis, 35(11–12), 1615–1634. https://doi.org/10.1081/css-120038558.
CAS
Article
Google Scholar
Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society Series B (Methodological), 44(2), 139–177.
Article
Google Scholar
Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in english soil. Science of The Total Environment., 454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005.
CAS
Article
Google Scholar
Berasaluce, M., Mondaca, P., Schuhmacher, M., Bravo, M., Sauvé, S., Navarro-Villarroel, C., Dovletyarova, E. A., & Neaman, A. (2019). Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. Journal of Trace Elements in Medicine and Biology, 54, 156–162. https://doi.org/10.1016/j.jtemb.2019.04.006.
CAS
Article
Google Scholar
Bochetti, M. J., Muñoz, E., Tume, P., & Bech, J. (2018). Analysis of three indirect methods for estimating the evapotranspiration in the agricultural zone of Chillán. Chile Obras y Proyectos, 19, 74–81.
Google Scholar
Cabral-Pinto, M. M. S., Inácio, M., Neves, O., Almeida, A. A., Pinto, E., Oliveiros, B., & Ferreira da Silva, E. A. (2019). Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Exposure and Health. https://doi.org/10.1007/s12403-019-00323-x.
Article
Google Scholar
Cabral Pinto, M. M. S., Silva, M. M. V. G., Ferreira da Silva, E. A., Dinis, P. A., & Rocha, F. (2017). Transfer processes of potentially toxic elements (PTE) from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago (Cape Verde). Journal of Geochemical Exploration, 183, 140–151. https://doi.org/10.1016/j.gexplo.2017.06.004.
CAS
Article
Google Scholar
Cachada, A., Dias, A. C., Pato, P., Mieiro, C., Rocha-Santos, T., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2013). Major inputs and mobility of potentially toxic elements contamination in urban areas. Environmental Monitoring and Assessment, 185(1), 279–294. https://doi.org/10.1007/s10661-012-2553-9.
CAS
Article
Google Scholar
Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2016). Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA, 139, 44–52. https://doi.org/10.1016/j.catena.2015.12.001.
CAS
Article
Google Scholar
Davidson, C. M., Duncan, C., MacNab, C., Pringle, B., Stables, S. J., & Willison, D. (2019). Measuring copper, Lead and zinc concentrations and oral bioaccessibility as part of the soils in scottish schools project. Minerals, 9(3), 173.
CAS
Article
Google Scholar
De Kimpe, C. R., & Morel, J.-L. (2000). Urban soil management: A growing concern. Soil Science, 165(1), 31–40.
Article
Google Scholar
De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66(3), 505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065.
CAS
Article
Google Scholar
Dong, B., Zhang, R., Gan, Y., Cai, L., Freidenreich, A., Wang, K., Guo, T., & Wang, H. (2019). Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of The Total Environment, 651, 3127–3138. https://doi.org/10.1016/j.scitotenv.2018.10.130.
CAS
Article
Google Scholar
Ferraris, F. (1981). Hoja Los Ángeles-Angol, escala 1:250.000, región del Bío-Bío. Instituto de Investigaciones Geológicas. Nº 5.
Figueiredo, A. M. G., Tocchini, M., & dos Santos, T. F. S. (2011). Metals in playground soils of São paulo city, Brazil. Procedia Environmental Sciences, 4, 303–309. https://doi.org/10.1016/j.proenv.2011.03.035.
CAS
Article
Google Scholar
Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643–653. https://doi.org/10.1016/j.ecolecon.2008.09.014.
Article
Google Scholar
Foti, L., Dubs, F., Gignoux, J., Lata, J.-C., Lerch, T. Z., Mathieu, J., Nold, F., Nunan, N., Raynaud, X., Abbadie, L., & Barot, S. (2017). Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Science of The Total Environment, 598, 938–948. https://doi.org/10.1016/j.scitotenv.2017.04.111.
CAS
Article
Google Scholar
Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, Y., & Sepúlveda, N. (2004). Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environmental Pollution, 127(3), 343–352. https://doi.org/10.1016/j.envpol.2003.08.020.
CAS
Article
Google Scholar
Glorennec, P., Lucas, J.-P., Mandin, C., & Le Bot, B. (2012). French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data. Environment International, 45, 129–134. https://doi.org/10.1016/j.envint.2012.04.010.
CAS
Article
Google Scholar
González-Grijalva, B., Meza-Figueroa, D., Romero, F. M., Robles-Morúa, A., Meza-Montenegro, M., García-Rico, L., & Ochoa-Contreras, R. (2019). The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Science of The Total Environment, 657, 1468–1479. https://doi.org/10.1016/j.scitotenv.2018.12.148.
CAS
Article
Google Scholar
Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Gomez-Nubla, L., Carrero, J. A., de Leão, F. B., Madariaga, J. M., & Silva, L. F. O. (2017). Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environmental Science and Pollution Research, 24(31), 24333–24345. https://doi.org/10.1007/s11356-017-9831-6.
CAS
Article
Google Scholar
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.
Article
Google Scholar
Horváth, A., Szűcs, P., & Bidló, A. (2015). Soil condition and pollution in urban soils: Evaluation of the soil quality in a Hungarian town. Journal of Soils and Sediments, 15(8), 1825–1835. https://doi.org/10.1007/s11368-014-0991-4.
CAS
Article
Google Scholar
Jarva, J., Tarvainen, T., Reinikainen, J., & Eklund, M. (2010). TAPIR — Finnish national geochemical baseline database. Science of The Total Environment, 408(20), 4385–4395. https://doi.org/10.1016/j.scitotenv.2010.06.050.
CAS
Article
Google Scholar
Jenks, W. F. (1956). Handbook of South American Geology, vol 65. Geological Society of America.
Kabata-Pendias, A. (2011). Trace elements in soils and plants. . CRC Press, Taylor & Francis Group, Boca Raton, FL.
Google Scholar
Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z.
CAS
Article
Google Scholar
Kumpiene, J., Brännvall, E., Taraškevičius, R., Aksamitauskas, Č, & Zinkutė, R. (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius. Lithuania. Journal of Geochemical Exploration, 108(1), 15–20. https://doi.org/10.1016/j.gexplo.2010.08.003.
CAS
Article
Google Scholar
Levin, M. J., Kim, K-H. J., Morel, J. L., Burghardt, W., Charzynski, P., Shaw R. K, SUITMA IWG (2017) Soils within Cities. Catena,
Li, G., Sun, G. X., Ren, Y., Luo, X. S., & Zhu, Y. G. (2018). Urban soil and human health: A review. European Journal of Soil Science, 69(1), 196–215. https://doi.org/10.1111/ejss.12518.
Article
Google Scholar
Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health, Part A, 42(9), 1241–1250. https://doi.org/10.1080/10934520701435684.
CAS
Article
Google Scholar
Ljung, K., Selinus, O., & Otabbong, E. (2006). Metals in soils of children’s urban environments in the small northern European city of Uppsala. Science of The Total Environment, 366(2), 749–759. https://doi.org/10.1016/j.scitotenv.2005.09.073.
CAS
Article
Google Scholar
Monaci, F., & Bargagli, R., (1997). Barium and other trace metals as indicators of vehicle emissions. Water, Air, and Soil Pollution, 100(1), 89-98. https://doi.org/10.1023/A:1018318427017.
CAS
Article
Google Scholar
Meteorológica de Chile D (2016) Climatología. http://www.meteochile.gob.cl/climatologia.php. Accessed 09/24/2016.
Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2012). Multi-criteria ranking and source identification of metals in public playgrounds in Queensland, Australia. Geoderma, 173–174, 173–183. https://doi.org/10.1016/j.geoderma.2011.12.013.
CAS
Article
Google Scholar
Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.
Google Scholar
Ng, S. L., Chan, L. S., Lam, K. C., & Chan, W. K. (2003). Heavy metal contents and magnetic properties of playground dust in Hong Kong. Environmental Monitoring and Assessment, 89(3), 221–232. https://doi.org/10.1023/a:1026103318778.
CAS
Article
Google Scholar
Nielsen, S. N. (2005). The triassic santa juana formation at the lower Biobío River, south central Chile. Journal of South American Earth Sciences, 19(4), 547–562. https://doi.org/10.1016/j.jsames.2005.06.002.
Article
Google Scholar
Parra, S., Bravo, M. A., Quiroz, W., Moreno, T., Karanasiou, A., Font, O., Vidal, V., & Cereceda, F. (2014). Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere, 111, 513–521. https://doi.org/10.1016/j.chemosphere.2014.03.127.
CAS
Article
Google Scholar
Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society, London, Special Publications, 264(1), 1–10. https://doi.org/10.1144/gsl.sp.2006.264.01.01.
CAS
Article
Google Scholar
Presley, S. M., Abel, M. T., Austin, G. P., Rainwater, T. R., Brown, R. W., McDaniel, L. N., Marsland, E. J., Fornerette, A. M., Dillard, M. L., Rigdon, R. W., Kendall, R. J., & Cobb, G. P. (2010). Metal concentrations in schoolyard soils from new Orleans, Louisiana before and after Hurricanes Katrina and Rita. Chemosphere, 80(1), 67–73. https://doi.org/10.1016/j.chemosphere.2010.03.031.
CAS
Article
Google Scholar
Pruvot, C., Douay, F., Hervé, F., & Waterlot, C. (2006). Heavy metals in soil, Crops and grass as a source of human exposure in the former mining areas (6 pp). Journal of Soils and Sediments, 6(4), 215–220. https://doi.org/10.1065/jss2006.10.186.
CAS
Article
Google Scholar
Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., & Ladenberger, A. (2012). The concept of compositional data analysis in practice — Total major element concentrations in agricultural and grazing land soils of Europe. Science of The Total Environment, 426, 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032.
CAS
Article
Google Scholar
Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of The Total Environment, 346(1–3), 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023.
CAS
Article
Google Scholar
Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. . Chichester: Wiley.
Book
Google Scholar
Reis, A. P., Patinha, C., Wragg, J., Dias, A. C., Cave, M., Sousa, A. J., Batista, M. J., Prazeres, C., Costa, C., Ferreira da Silva, E., & Rocha, F. (2014). Urban geochemistry of lead in gardens, playgrounds and schoolyards of Lisbon, Portugal: Assessing exposure and risk to human health. Applied Geochemistry, 44, 45–53. https://doi.org/10.1016/j.apgeochem.2013.09.022.
CAS
Article
Google Scholar
Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2019). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00404-5.
Article
Google Scholar
Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health, 42(8), 2573–2594. https://doi.org/10.1007/s10653-019-00404-5.
CAS
Article
Google Scholar
Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. https://doi.org/10.1016/j.envint.2019.02.011.
CAS
Article
Google Scholar
Rodríguez-Oroz, D., Vidal, R., Fernandoy, F., Lambert, F., & Quiero, F. (2018). Metal concentrations and source identification in Chilean public children’s playgrounds. Environmental Monitoring and Assessment, 190(12), 703. https://doi.org/10.1007/s10661-018-7056-x.
CAS
Article
Google Scholar
Salmani-Ghabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Cereceda-Balic, F., Fadic, X., Vidal, V., Funes, M., & Pinilla-Gil, E. (2016). Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncaví-Ventanas industrial complex, Chile. Environmental Pollution, 218, 322–330. https://doi.org/10.1016/j.envpol.2016.07.007.
CAS
Article
Google Scholar
Salmanighabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Fadic-Ruiz, X., Vidal-Cortez, V., Cereceda-Balic, F., & Pinilla-Gil, E. (2015). Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Science of The Total Environment, 527–528, 335–343. https://doi.org/10.1016/j.scitotenv.2015.05.010.
CAS
Article
Google Scholar
Schalscha, E., & Ahumada, I. (1998). Heavy metals in rivers and soils of central Chile. Water Science and Technology, 37(8), 251–255. https://doi.org/10.1016/s0273-1223(98)00255-8.
Article
Google Scholar
Stalikas, C. D., Chaidou, C. I., & Pilidis, G. A. (1997). Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Science of The Total Environment, 204(2), 135–146. https://doi.org/10.1016/S0048-9697(97)00156-3.
CAS
Article
Google Scholar
Tanić, M. N., Ćujić, M. R., Gajić, B. A., Daković, M. Z., & Dragović, S. D. (2018). Content of the potentially harmful elements in soil around the major coal-fired power plant in Serbia: Relation to soil characteristics, evaluation of spatial distribution and source apportionment. Environment and Earth Science, 77(1), 28. https://doi.org/10.1007/s12665-017-7214-4.
CAS
Article
Google Scholar
Taraškevičius, R., Motiejūnaitė, J., Zinkutė, R., Eigminienė, A., Gedminienė, L., & Stankevičius, Ž. (2017). Similarities and differences in geochemical distribution patterns in epiphytic lichens and topsoils from kindergarten grounds in Vilnius. Journal of Geochemical Exploration, 183, 152–165. https://doi.org/10.1016/j.gexplo.2017.08.013.
CAS
Article
Google Scholar
Tume, P., Barrueto, K., Olguin, M., Torres, J., Cifuentes, J., Ferraro, F. X., Roca, N., Bech, J., & Cornejo, O. (2020). The influence of the industrial area on the pollution outside its borders: A case study from Quintero and Puchuncavi districts. Chile Environmental Geochemistry and Health, 42(8), 2557–2572. https://doi.org/10.1007/s10653-019-00423-2.
CAS
Article
Google Scholar
Tume, P., González, E., King, R. W., Cuitiño, L., Roca, N., & Bech, J. (2018a). Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano Chile. Journal of Soils and Sediments, 18(6), 2335–2349. https://doi.org/10.1007/s11368-017-1750-0.
CAS
Article
Google Scholar
Tume, P., González, E., Reyes, F., Fuentes, J. P., Roca, N., Bech, J., & Medina, G. (2019). Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA, 175, 304–316. https://doi.org/10.1016/j.catena.2018.12.030.
CAS
Article
Google Scholar
Tume, P., King, R., González, E., Bustamante, G., Reverter, F., Roca, N., & Bech, J. (2014). Trace element concentrations in schoolyard soils from the port city of Talcahuano, Chile. Journal of Geochemical Exploration, 147, 229–236.
CAS
Article
Google Scholar
Tume, P., Roca, N., Rubio, R., King, R., & Bech, J. (2018b). An assessment of the potentially hazardous element contamination in urban soils of Arica, Chile. Journal of Geochemical Exploration, 184, 345–357. https://doi.org/10.1016/j.gexplo.2016.09.011.
CAS
Article
Google Scholar
Tumuklu, A., Ciflikli, M., & Ozgur, F. Z. (2008). Determination of heavy metals in soils around Afsin-Elbistan thermal power plant (Kahramanmaras, Turkey). Asian Journal of Chemistry, 20(8), 6376–6384.
CAS
Google Scholar