Skip to main content

Advertisement

Log in

Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Aristolochic acid I (AAI) is a potent nephrotoxic and carcinogenic compound produced by plants of the Aristolochiaceae family and thoroughly investigated as a main culprit in the etiology of Balkan endemic nephropathy (BEN). So far, the AAI exposure was demonstrated to occur through the consumption of Aristolochia clematitis plants as traditional remedies, and through the contamination of the surrounding environment in endemic areas: soil, food and water contamination. Our study investigated for the first time the level of AAI contamination in 141 soil and vegetable samples from two cultivated gardens in non-endemic areas, A. clematitis being present in only one of the gardens. We developed and validated a simple and sensitive ultra-high-performance liquid chromatography–ion trap mass spectrometry method for qualitative and quantitative AAI analysis. The results confirmed the presence of AAI at nanogram levels in soil and vegetable samples collected from the non-endemic garden, where A. clematitis grows. These findings provide additional evidence that the presence of A. clematitis can cause food crops and soil contamination and unveil the pathway through which AAI could move from A. clematitis to other plant species via a common matrix: the soil. Another issue regarding the presence of AAI, in a non-endemic BEN area from Romania, could underlie a more widespread environmental exposure to AAI and explain certain BEN-like cases in areas where BEN has not been initially described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Au, C. K., Zhang, J., Chan, C. K., Li, C., Liu, G., Pavlovic, N. M., Yao, J., & Chan, W. (2020). Determination of aristolochic acids in vegetables: Nephrotoxic and carcinogenic environmental pollutants contaminating a broad swath of the food supply and driving incidence of Balkan endemic nephropathy. Chemical Research in Toxicology, 33(9), 2446–2454. https://doi.org/10.1021/acs.chemrestox.0c00229

    Article  CAS  Google Scholar 

  • Calderón-Preciado, D., Renault, Q., Matamoros, V., Cañameras, N., & Bayona, J. M. (2012). Uptake of organic emergent contaminants in spath and lettuce: An in vitro experiment. Journal of Agricultural and Food Chemistry, 60(8), 2000–2007. https://doi.org/10.1021/jf2046224

    Article  CAS  Google Scholar 

  • Chan, C.-K., Liu, Y., Pavlović, N. M., & Chan, W. (2018). Etiology of Balkan endemic nephropathy: An update on aristolochic acids exposure mechanisms. Chemical Research in Toxicology, 31(11), 1109–1110. https://doi.org/10.1021/acs.chemrestox.8b00291

    Article  CAS  Google Scholar 

  • Chan, C.-K., Pavlović, N. M., & Chan, W. (2019a). Development of a novel liquid chromatography-tandem mass spectrometric method for aristolochic acids detection: Application in food and agricultural soil analyses. Food Chemistry, 289(15), 673–679. https://doi.org/10.1016/j.foodchem.2019.03.073

    Article  CAS  Google Scholar 

  • Chan, C.-K., Liu, Y., Pavlović, N. M., & Chan, W. (2019b). Aristolochic acids: Newly identified exposure pathways of this class of environmental and food-borne contaminants and its potential link to chronic kidney diseases. Toxics, 7(1), 14. https://doi.org/10.3390/toxics7010014

    Article  CAS  Google Scholar 

  • Chan, C.-K., Chan, K. K. J., Pavlović, N. M., & Chan, W. (2019c). Liquid chromatography–tandem mass spectrometry analysis of aristolochic acids in soil samples collected from Serbia: Link to Balkan endemic nephropathy. Rapid Communications in Mass Spectrometry, 34(S1), e8547. https://doi.org/10.1002/rcm.8547

    Article  CAS  Google Scholar 

  • Chan, W., Lee, K.-C., Liu, N., & Cai, Z. (2007). A sensitivity enhanced high-performance liquid chromatography fluorescence method for the detection of nephrotoxic and carcinogenic aristolochic acid in herbal medicines. Journal of Chromatography A, 1164(1–2), 113–119. https://doi.org/10.1016/j.chroma.2007.06.055

    Article  CAS  Google Scholar 

  • Chan, W., Pavlović, N. M., Li, W., Chan, C.-K., Liu, J., Deng, K. Y., Wang, B. M., & Kostić, E. N. (2016). Quantitation of aristolochic acids in corn, wheat grain, and soil samples collected in Serbia: Identifying a novel exposure pathway in the etiology of Balkan endemic nephropathy. Journal of Agricultural and Food Chemistry, 64(29), 5928–5934. https://doi.org/10.1021/acs.jafc.6b02203

    Article  CAS  Google Scholar 

  • Chiou, Y. E., Chien, W. C., Chung, C. H., Chang, H. A., Kao, Y. C., Tsay, P. K., & Tzeng, N. S. (2020). New users of herbal medicine containing aristolochic acids and the risk of dementia in the elderly: A nationwide, population-based study in Taiwan. Neuropsychiatric Disease and Treatment, 16, 1493–1504.

    Article  Google Scholar 

  • Collins, C. D., & Finnegan, E. (2010). Modeling the plant uptake of organic chemicals, including the soil–air–plant pathway. Environmental Science & Technology, 44, 998–1003. https://doi.org/10.1021/es901941z

    Article  CAS  Google Scholar 

  • Cosyns, J. P. (2003). Aristolochic acid and ‘Chinese herbs nephropathy’: A review of the evidence to date. Drug Safety, 26, 33–48. https://doi.org/10.2165/00002018-200326010-00004

    Article  CAS  Google Scholar 

  • Debelle, F. D., Vanherweghem, J. L., & Nortier, J. L. (2008). Aristolochic acid nephropathy: A worldwide problem. Kidney International, 74, 158–169. https://doi.org/10.1038/ki.2008.129

    Article  CAS  Google Scholar 

  • De Jonge, H., & Vanrenterghem, Y. (2008). Aristolochic acid: The common culprit of Chinese herbs nephropathy and Balkan endemic nephropathy. Nephrology Dialysis Transplantation, 23, 39–41. https://doi.org/10.1093/ndt/gfm667

    Article  CAS  Google Scholar 

  • Dettenmaier, E. (2008). Measuring and modeling of plant root uptake of organic chemicals. Ph.D. dissertation, Utah State University. Retrieved June 18, 2020, from https://digitalcommons.usu.edu/etd/18/

  • Drăghia, L. P., Lukinich-Gruia, A. T., Oprean, C., Paunescu, V., & Tatu, C. A. (2019). Preliminary study of soil composition from Balkan endemic nephropathy areas, using a GC–MS method. Environmental Engineering and Management Journal, 18, 2455–2463.

    Article  Google Scholar 

  • Gluhovschi, G., Margineanu, F., Velciov, S., Gluhovschi, C., Bob, F., Petrica, L., Bozdog, G., Trandafirescu, V., & Modalca, M. (2010). Fifty years of Balkan endemic nephropathy in Romania: Some aspects of the endemic focus in the Mehedinti county. Clinical Nephrology, 75, 34–48. https://doi.org/10.2379/CNX06470

    Article  Google Scholar 

  • Gruia, A. T., Oprean, C., Ivan, A., Cean, A., Cristea, M., Drăghia, L., Damiescu, R., Pavlovic, N. M., Paunescu, V., & Tatu, C. A. (2018). Balkan endemic nephropathy and aristolochic acid: I. An investigation into the role of soil and soil organic matter contamination, as a potential natural exposure pathway. Environmental Geochemistry and Health, 40, 1437–1448. https://doi.org/10.1007/s10653-017-0065-9

    Article  CAS  Google Scholar 

  • Hoang, M. L., Chen, C. H., Chen, P. C., Roberts, N. J., Dickman, K. G., Hwa Yun, B., Turesky, R. J., Yeong-Shiau, Pu., Vogelstein, B., Papadopoulos, N., Grollman, A. P., Kinzler, K. W., & Rosenquist, T. A. (2016). Aristolochic acid in the etiology of renal cell carcinoma. Cancer Epidemiology, Biomarkers and Prevention, 25(12), 1600–1608. https://doi.org/10.1158/1055-9965

    Article  CAS  Google Scholar 

  • Hranjec, T., Kovać, A., Kos, J., Mao, W., Chen, J. J., Grollman, A. P., & Jelanović, B. (2005). Endemic nephropathy: the case for chronic poisoning by Aristolochia. Croatian Medical Journal, 46(1), 116–125.

    Google Scholar 

  • IARC Monographson the Evaluation of Carcinogenic Risks to Humans. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. (Vol. 82). World Health Organization, International Agency for Research on Cancer.

    Google Scholar 

  • Ivan, A., Lam, D., Cristea, M. I., Telea, A., Gruia, A. T., Oprean, C., Margineanu, F., Bojin, F. M., Saffery, R., Paunescu, V., & Tatu, C. A. (2020). Differential methylation pattern of xenobiotic metabolizing genes and susceptibility to Balkan endemic nephropathy, in a cohort of Romanian patients. Journal of Nephrology, 33(1), 91–100. https://doi.org/10.1007/s40620-019-00621-2

    Article  CAS  Google Scholar 

  • Ivić, M., & Lovic, B. (1967). Carcinogenic action of Aristolochia. Acta Medica Medianae, 5, 1–3.

    Google Scholar 

  • Jadot, I., Declèves, A. E., Nortier, J., & Caron, N. (2017). An integrated view of aristolochic acid nephropathy: Update of the literature. International Journal of Molecular Sciences, 18(2), 297. https://doi.org/10.3390/ijms18020297

    Article  CAS  Google Scholar 

  • Jelaković, B., Dika, Ž, Arlt, V. M., Stiborova, M., Pavlović, N. M., Nikolić, J., Colet, J.-M., Vanherweghem, J.-L., & Nortier, J. L. (2019). Balkan endemic nephropathy and the causative role of aristolochic acid. Seminars in Nephrology, 39(3), 284–296. https://doi.org/10.1016/j.semnephrol.2019.02.007

    Article  CAS  Google Scholar 

  • Khokhar, K. M. (2017). Environmental and genotypic effects on bulb development in onion—A review. The Journal of Horticultural Science and Biotechnology, 92(5), 448–454. https://doi.org/10.1080/14620316.2017.1314199

    Article  CAS  Google Scholar 

  • Li, W., Chan, C.-K., Liu, Y., Yao, J., Miti, B., Kosti, E. N., Milosavljević, B., Davinić, I., Orem, W. H., Tatu, C. A., Dedon, P. C., Pavlović, N. M., & Chan, W. (2018). Aristolochic acids as persistent soil pollutants: Determination of risk for human exposure and nephropathy from plant uptake. Journal of Agricultural and Food Chemistry, 66(43), 11468–11476. https://doi.org/10.1021/acs.jafc.8b04770

    Article  CAS  Google Scholar 

  • Li, W., Hu, Q., & Chan, W. (2016). Uptake and accumulation of nephrotoxic and carcinogenic aristolochic acids in food crops grown in Aristolochia clematitis-contaminated soil and water. Journal of Agricultural and Food Chemistry, 64(1), 107–112. https://doi.org/10.1021/acs.jafc.5b05089

    Article  CAS  Google Scholar 

  • Pavlović, N. M., Maksimović, V., Maksimović, J. D., Orem, W. H., Tatu, C. A., Lerch, H. E., Bunnell, J. E., Kostić, E. N., Szilagyi, D. N., & Paunescu, V. (2013). Possible health impacts of naturally occurring uptake of aristolochic acids by maize and cucumber roots: Links to the etiology of endemic (Balkan) nephropathy. Environmental Geochemistry and Health, 35(2), 215–226. https://doi.org/10.1007/s10653-013-9514-2

    Article  CAS  Google Scholar 

  • Petrescu, A. M., Lukinich-Gruia, A. T., Paunescu, V., & Ilia, G. A. (2019). Theoretical study of the molecular coupled structures of aristolochic acids and humic acid potential environmental contaminants. Chemistry & Biodiversity, 16(11), e1900406. https://doi.org/10.1002/cbdv.201900406

    Article  CAS  Google Scholar 

  • Tangtong, C. (2014). Environmental processes controlling the fate and transport of aristolochic acid in agricultural soil and copper in contaminated lake sediment. Doctor of Philosophy Dissertation, Michigan State University USA. https://d.lib.msu.edu/etd/2908

  • Tangtong, C., Qiao, L., Long, D. T., & Voice, T. C. (2020). Octanol–water partition coefficients of aristolochic acids and implications to the etiology of Balkan endemic nephropathy. Aquatic Geochemistry, 26, 183–190. https://doi.org/10.1007/s10498-019-09367-6

    Article  CAS  Google Scholar 

  • Tomlinson, T., Fernandes, A., & Grollman, A. P. (2020). Aristolochia herbs and iatrogenic disease: The case of Portland’s powders. Yale Journal of Biology and Medicine, 93, 355–363.

    Google Scholar 

  • Trujillo, W. A., Sorenson, W. R., La Luzerne, P., Austad, J. W., & Sullivan, D. (2006). Determination of aristolochic acid in botanicals and dietary supplements by liquid chromatography with ultraviolet detection and by liquid chromatography/mass spectrometry: Single laboratory validation confirmation. Journal of AOAC International, 89(4), 942–959. https://doi.org/10.1093/jaoac/89.4.942

    Article  CAS  Google Scholar 

  • Tung, K. K., Chan, C. K., Zhao, Y., Chan, K. J., Liu, G., Pavlović, N. M., & Chan, W. (2020). Occurrence and environmental stability of aristolochic acids in groundwater collected from Serbia: Links to human exposure and Balkan endemic nephropathy. Environmental Science & Technology, 54(3), 1554–1561. https://doi.org/10.1021/acs.est.9b05337

    Article  CAS  Google Scholar 

  • Yahyazadeha, M., Nowaka, M., Kimaa, H., & Selmar, D. (2017). Horizontal natural product transfer: A potential source of alkaloidal contaminants in phytopharmaceuticals. Phytomedicine, 34, 21–25. https://doi.org/10.1016/j.phymed.2017.07.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LPD, ATLG and CAT contributed to conception and design; LPD, ATLG, CO and CAT acquired the data; LPD, ATLG, CO, NMP, VP and CAT analyzed and interpreted the data; LPD, ATLG, CO, NMP, VP and CAT drafted the article and revised it critically; LPD, ATLG, CO, NMP, VP and CAT finally approved the version to be submitted for publication.

Corresponding authors

Correspondence to Lavinia Paula Drăghia or Alexandra Teodora Lukinich-Gruia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drăghia, L.P., Lukinich-Gruia, A.T., Oprean, C. et al. Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway. Environ Geochem Health 43, 4163–4178 (2021). https://doi.org/10.1007/s10653-021-00903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00903-4

Keywords

Navigation