Skip to main content

Advertisement

Log in

Effect of bioavailable arsenic fractions on the collembolan community in an old abandoned mine waste

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mine waste from abandoned mines poses a risk to soil ecosystems due to the dispersion of arsenic (As) in the mine waste to the nearby soil environment. Because the bioavailability of As varies depending on the As chemical fraction and exposure conditions, chemical assessment of As fractions in soil around mine waste is essential to understand their impact on soil ecosystem. Here, six sites around the mine waste were selected for investigating toxic effects of As-contaminant soil on Collembola community. To measure the As chemical fraction in soil and bioavailability, Wenzel sequential extraction employed. Meanwhile, the collembolans that live in each sampling site were identified at the species level, and the characteristics and composition of the collembola community were investigated. The mobility fraction (F1 + F2 + F3; MF) was related to the risk to the collembolan community, and the adverse impact of high MF appeared to lead to a decrease in abundance, richness, and Shannon index. According to non-metric multidimensional scaling analysis, F1, F2, F3, and pH were shown as the significant factor explaining the NMDS space. Especially, the sampling site with the highest concentration of F3 showed statistically different species composition from the other sites. In the case of As-contaminated soil around the old mine waste, the toxic effects of the remaining F3 in soil, as well as that of F1 and F2, should be fully considered. This study suggested that collembolan community could be used for understanding the impact of bioavailable As fraction in the old abandoned mine area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Adriano, D. C. (1986). Arsenic. In D. C. Adriano (Ed.), Trace elements in the terrestrial environment (pp. 308–321). Springer.

    Chapter  Google Scholar 

  • Ahn, Y. T., Yun, H. S., Pandi, K., Park, S., Ji, M., & Choi, J. (2020). Heavy metal speciation with prediction model for heavy metal mobility and risk assessment in mine-affected soils. Environmental Science and Pollution Research, 27, 3213–3223.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Garcia-Sanchez, A., & Regina, I. S. (2008). Evaluation of various chemical extraction methods to estimate plant available arsenic in mine soils. Chemosphere, 70, 1459–1467.

    Article  CAS  Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  • Anderson, M., Ferguson, J., & Gavis, J. (1976). Arsenate adsorption on amorphous aluminum hydroxide. Journal of Colloid and Interface Science, 54(3), 391–399.

    Article  CAS  Google Scholar 

  • Batista, M. J., Abreu, M. M., & Pinto, M. S. (2007). Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal. Journal of Geochemical Exploration, 92(2–3), 159–176.

    Article  CAS  Google Scholar 

  • Bellinger, P.F., Christiansen, K.A., & Janssens, F. (2020). Checklist of the Collembola of the World. Retrived October 19, 2020, from http://www.collembola.org.

  • Casado, M., Anawar, H. M., Garcia-Sanchez, A., & Santa Regina, I. (2007). Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain). Bulletin of Environmental Contamination and Toxicology, 79, 29–35.

    Article  CAS  Google Scholar 

  • Casiot, C., Ujevic, M., Munoz, M., Seidel, J. L., & Elbaz-Poulichet, F. (2007). Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Applied Geochemistry, 22, 788–798.

    Article  CAS  Google Scholar 

  • Cassagne, N., Gauquelin, T., Bal-Serin, M. C., & Gers, C. (2006). Endemic Collembola, privileged bioindicators of forest management. Pedobiologia, 50, 127–134.

    Article  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007a). Trace elements portioning and soil particle characterization around mining and smelting areas at Tharsis, Riotinto and Huelva, SW, Spain. Science of the Total Environment, 373(2–3), 88–500.

    Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007b). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW, Spain. Water Air and Soil Pollution, 182(1–4), 245–261.

    Article  CAS  Google Scholar 

  • Crouau, Y., & Cazes, L. (2005). Unexpected reduction in reproduction of collembolan exposed to an arsenic contaminated soil. Environmental Toxicology and Chemistry, 24, 1716–1720.

    Article  CAS  Google Scholar 

  • Díaz, S. L., Espóisto, M. E., del Carmen Blanco, M., Amiotti, N. M., Schmidt, E. S., Sequeira, M. E., Paoloni, J. D., & Nicolli, H. N. (2016). Control factors of the spatial distribution of arsenic and other associated elements in loess soils and waters of the southern Pampa (Argentina). CATENA, 140, 205–216.

    Article  CAS  Google Scholar 

  • Downs, W. G. (1943). Polyvinyl alcohol: A medium for mounting and clearing biological specimens. Science, 97, 539–540.

    Article  CAS  Google Scholar 

  • Dradrach, A., Szopka, K., & Karczewska, A. (2019). Ecotoxicity of pore water in soils developed on historical arsenic mine dumps: The effects of forest litter. Ecotoxicology and environmental safety, 181, 202–213.

    Article  CAS  Google Scholar 

  • Du, X., Gao, L., Xun, Y., & Feng, L. (2020). Comparison of different sequential extraction procedures to identify and estimate bioavailability of arsenic fractions in soil. Journal of Soils and Sediments, 20, 3656–3668.

    Article  CAS  Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizophere-plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Fountain, M. T., & Hopkin, S. P. (2005). Folsomia candida (Collembola): A “Standard” soil arthropod. Annual Review of Entomology, 50, 201–222.

    Article  CAS  Google Scholar 

  • Gee, W. G., & Or, D. (2002). Particle size analysis. In J. Dane & G. C. Topp (Eds.), Methods of soil analysis Part 4. (pp. 225–293). SSSA.

    Google Scholar 

  • Hsu, W. M., His, H. C., Huang, Y. T., Liao, C. S., & Hseu, Z. Y. (2012). Partitioning of arsenic in soil crop systems irrigated using groundwater: A case study of rice paddy soils in southwestern Taiwan. Chemosphere, 86, 606–613.

    Article  CAS  Google Scholar 

  • ISO 11466. (1995). Soil quality—Extraction of trace elements soluble in aqua regia. International Organization of Standardization.

    Google Scholar 

  • Jung, G. B., Kim, W. I., Lee, J. S., Shin, J. D., Kim, J. H., & Yoon, S. G. (2005). Availability of heavy metals in soils with different characteristics and controversial points for analytical methods of soil contamination in Korea. Korean Journal of Environmental Agriculture, 24(2), 106–116.

    Article  Google Scholar 

  • Jung, M. C., & Thornton, I. (1997). Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb/Zn mine in Korea. Science of the Total Environment, 198(2), 105–121.

    Article  CAS  Google Scholar 

  • Kim, M. S., Kim, Y. S., Min, H. G., Kim, J. G., & Koo, N. (2017). Pine forest soil characteristics and major soil impact factors for natural regeneration. Korean Journal of Soil Science and Fertilizer, 50(3), 179–186.

    Article  CAS  Google Scholar 

  • Kim, M., Lee, M., Kim, Y., Lee, Y. S., Son, J., Hyun, S., & Cho, K. (2019). Transfer and biological effects of arsenate from soil through a plant-aphid system to the parasitoid wasp, Aphidius colemani. Ecotoxicology and Environmental Safety, 173, 305–313.

    Article  CAS  Google Scholar 

  • Kim, M. S., Lee, S. H., & Kim, J. G. (2020). Assessment of fraction and mobility of arsenic in soil near the mine waste dam. Sustainability, 12, 1480.

    Article  CAS  Google Scholar 

  • Kim, M. S., Min, H. G., Kim, J. G., & Lee, S. R. (2019). Estimating arsenic mobility and phytotoxicity using two different phosphorous fertilizer release rates in soil. Agronomy. https://doi.org/10.3390/agronomy9030111.

    Article  Google Scholar 

  • Kim, M. S., Min, H. G., Koo, N., Park, J. S., Lee, S. H., Bak, G. I., & Kim, J. G. (2014). The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals contaminated water and soil using chemical and biological assessments. Journal of Environmental Management, 146, 124–130.

    Article  CAS  Google Scholar 

  • Ko, B. G., Anderson, C. W. N., Bolan, N. S., Huh, K.-Y., & Vogleler, I. (2008). Potential for the phytoremediation of arsenic-contaminated mine tailing in Fiji. Australian Journal of Soil Research, 46, 493–501.

    Article  CAS  Google Scholar 

  • Ko, I. W., Kim, J. Y., & Kim, K. Y. (2006). The status of mine reclamation and remediation technology. Geoenvironmental Engineering, 7(3), 49–53.

    Google Scholar 

  • Koo, N., Lee, S. H., & Kim, J. G. (2012). Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity. Environmental Geochemistry and Health, 34, 337–348.

    Article  CAS  Google Scholar 

  • Kopeszki, H. (1997). An active bioindication method for the diagnosis of soil properties using Collembola. Pedobiologia, 41, 59–66.

    Google Scholar 

  • Korea Meteorological Administration (KMA). (2020). Climate of Korea. Retrieved October 18, 2020, from. http://www.kma.go.kr/eng/biz/climate_01.jsp.

  • Korea Ministry of Environment (KME). (2011). Enforcement Decree of the Soil Environment Conservation Act. Korea Ministry of Environment.

    Google Scholar 

  • Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144, 62–69.

    Article  CAS  Google Scholar 

  • Ladeira, A. C. Q., & Ciminelli, V. S. T. (2004). Adsorption and desorption of arsenic on an oxisol and its constituents. Water Research, 38, 2087–2094.

    Article  CAS  Google Scholar 

  • Larink, O. (1997). Springtail and mites: Important Knots in the food web of soils. In G. Benckieser (Ed.), Fauna in soil ecosystem. Recycling process, nutrient fluxes, and agricultural production. (pp. 225–264). Marcel Dekker.

    Google Scholar 

  • Lee, I. (2015). Taxonomic study of order Poduromorpha (Collembola) from Korea. Master’s Thesis, Chonbuk National University.

  • Lee, S. H., Ji, W., Lee, W. S., Koo, N., Kim, M. S., & Park, J. S. (2014). Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. Journal of Environmental Management, 139, 15–21.

    Article  CAS  Google Scholar 

  • Lee, Y. S., Son, J., Wee, J., Kim, Y., Hong, J., & Cho, K. (2020). A reconsideration of the safety of fenoxycarb (IGR) in soil environment: The toxicity of fenoxycarb to Yuukianura szeptyckii (Collembola). Journal of Asia-Pacific Entomology, 23, 214–218.

    Article  Google Scholar 

  • Lee, Y. S., Son, J., Wee, J., Kim, Y., Kwon, J. H., & Cho, K. (2019). Contributions of egg production and egg hatching to the total toxicity of teflubenzuron in Yuukianura szeptyckii (Collembola) in soil toxicity test. Environmental Science and Pollution Research, 26, 26184–26192.

    Article  CAS  Google Scholar 

  • Lee, Y. S., Yang, N. H., Son, J., Kim, Y., Park, K. H., & Cho, K. (2016). Effects of temperature on development, molting, and population growth of Yuukianura szeptyckii Deharveng & Weiner, 1984 (Collembola: Neanuridae). Applied Soil Ecology, 108, 325–333.

    Article  Google Scholar 

  • Liu, C., Yu, H. Y., Liu, C., Li, F., Xu, X., & Wang, Q. (2015). Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink? Environmental Pollution, 199, 95–101.

    Article  CAS  Google Scholar 

  • López, R. P., Valero, A. M. A., Nieto, J. M., Sáez, R., & Matos, J. X. (2008). Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos mine (Iberian Pyrite Belt). Applied Geochemistry, 23(12), 3452–3463.

    Article  CAS  Google Scholar 

  • Moreno-Jiménez, E., Manzano, R., Esteban, E., & Peñalosa, J. (2010). The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): Mobility and transfer to native flora. Journal of Soils and Sediments, 10, 301–312.

    Article  CAS  Google Scholar 

  • Narwal, R. P., Singh, B. R., & Salbu, B. (1999). Association of Cd, Zn, Cu, and Ni with components in naturally heavy metal rich soils studied by parallel and sequential extractions. Community of Soil Science and Plant Analysis, 30, 1209–1230.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In D. L. Spars (Ed.), Methods of soil analysis Part 3—Chemical methods. (pp. 961–1010). SSSA.

    Google Scholar 

  • NIAST. (2000). Method of soil and plant analysis. National Institute of Agricultural Science and Technology, Rural Development Administration.

    Google Scholar 

  • Park, N. (2007). Systematic study of the family Hypogastruridae (Hexapoda, Collembola) from Korea. Master’s Thesis, Chonbuk National University.

  • Petersen, H., & Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39, 287–388.

    Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16, 1247–1253.

    Article  CAS  Google Scholar 

  • Potapov, M. B. (2001). Isotomidae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola. (Vol. III, pp. 1–602). Staatliches Museum für Naturkunde.

    Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez Sanchez, J. F. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189, 291–333.

    Article  CAS  Google Scholar 

  • Roussel, C., Néel, C., & Bril, H. (2000). Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. The Science of the Total Environment, 263(1–3), 209–219.

    Article  CAS  Google Scholar 

  • Rusek, J. (1998). Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation, 7, 1207–1219.

    Article  Google Scholar 

  • Santorufo, L., Van Gestel, C. A., Rocco, A., & Maisto, G. (2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161, 57–63.

    Article  CAS  Google Scholar 

  • Institute, S. A. S. (2011). SAS/IML 9.3 user’s guide. SAS Institute.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Shu, W. S., Yee, Z. H., Zhang, Z. Q., & Wong, M. H. (2001). Acidification of lead/zinc mine tailing and its effect on heavy metal mobility. Environment International, 26(5–6), 389–394.

    Article  CAS  Google Scholar 

  • Sofianska, E., & Michailidis, K. (2015). Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4335-7.

    Book  Google Scholar 

  • Syrek, D., Weiner, W. M., Wojtylak, M., Olszowska, G., & Kwapis, Z. (2006). Species abundance distribution of collembolan communities in forest soils polluted with heavy metals. Applied Soil Ecology, 31, 239–250.

    Article  Google Scholar 

  • Tiankao, W., & Chotpantarat, S. (2018). Risk assessment of arsenic from contaminated soils to shallow groundwater in Ong Phra Sub-District, Suphan Buri Province, Thailand. Journal of Hydrology: Rgional Studies, 19, 80–96.

    Google Scholar 

  • Van Herreweghe, S., Swennen, R., Vandecasteele, C., & Cappuyns, V. (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122(3), 323–342.

    Article  Google Scholar 

  • Volz, H. (1962). Beiträge zu einer pedozoologischen Standortslehre. Pedobiologia, 1, 242–290.

    Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), 309–323.

    Article  CAS  Google Scholar 

  • Xu, Y., Li, Y., Li, H., Wang, L., Liao, X., Wang, J., & Kong, C. (2018). Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Science of the Total Environment, 633, 240–248.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (NRF-2018R1D1A1B07047657 and 2019R1I1A1A01043684) and partly supported by Korea University Grant.

Author information

Authors and Affiliations

Authors

Contributions

Y-SL, M-SK contributed to conceptualization, methodology, investigation, data curation, formal analysis, visualization, writing—original draft. H-GM, JW contributed to conceptualization, investigation. J-GK contributed to supervision, writing-reviewing and editing. KC contributed to supervision, writing—original draft, writing-reviewing and editing.

Corresponding author

Correspondence to Kijong Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 230 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Kim, MS., Wee, J. et al. Effect of bioavailable arsenic fractions on the collembolan community in an old abandoned mine waste. Environ Geochem Health 43, 3953–3966 (2021). https://doi.org/10.1007/s10653-021-00895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00895-1

Keywords

Navigation