Ahmed, B., Rizvi, A., Zaidi, A., Khan, M. S., & Musarrat, J. (2019). Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation, and metallothionein production. RSC Advances, 9(8), 4210–4225. https://doi.org/10.1039/C8RA09305A.
CAS
Article
Google Scholar
Apodaca, S. A., Tan, W., Dominguez, O. E., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Science of The Total Environment, 599–600, 2085–2094.
Article
Google Scholar
Arendt, E. K., & Zannini, E. (2013). Cereal grains for the food and beverage industries (p. 512). Sawston, Cambridge: Woodhead Publishing Limited.
Book
Google Scholar
Bauer, T., Pinskii, D., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Burachevskaya, M., et al. (2018). Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem. Science of the Total Environment, 626, 1100–1107. https://doi.org/10.1016/j.scitotenv.2018.01.134.
CAS
Article
Google Scholar
Burachevskaya, M. V., Minkina, T. M., Mandzhieva, S. S., Bauer, T. V., Chaplygin, V. A., Sushkova, S. N., et al. (2018). Comparing two methods of sequential fractionation in the study of copper compounds in Haplic Chernozem under model experimental conditions. Journal of Soils and Sediments, 18(6), 2379–2386.
CAS
Article
Google Scholar
Chernyshov, A. A., Veligzhanin, A. A., & Zubavichus, Y. V. (2009). Structural materials science end-station at the Kurchatov Synchrotron radiation Source: recent instrumentation upgrades and experimental results. Nuclear Instruments and Methods in Physics in Research A, 603, 95–98.
CAS
Article
Google Scholar
Deng, F., Wang, S., & Xin, H. (2016). Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology, 97, 702–708.
CAS
Article
Google Scholar
Fajardo, C., Costa, G., Nand, M., Martín, C., Martín, M., & Sánchez-Fortún, S. (2019). Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Science of The Total Environment, 656, 421–432.
CAS
Article
Google Scholar
Fedorenko, A. G., Minkina, T. M., Chernikova, N. P., Fedorenko, G. M., Mandzhieva, S. S., Rajput, V. D., et al. (2020). The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00530-5.
Article
Google Scholar
Fedotov, G. N., Pakhomov, E. I., Pozdnyakov, A. I., Kuklin, A. I., Islamov, A. K., & Putlyaev, V. I. (2007). Structure and properties of soil organic-mineral gel. Eurasian Soil Science, 40(9), 956–961.
Article
Google Scholar
Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., & Lowry, G. V. (2018). CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environmental Science & Technology, 52(5), 2888–2897. https://doi.org/10.1021/acs.est.7b05816.
CAS
Article
Google Scholar
Ghasemi, S. N., Fallah, S., Pokhrel, L. R., & Rostamnejadi, A. (2017). Natural amelioration of zinc oxide nanoparticles toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiology and Biochemistry., 112, 227–238.
Article
Google Scholar
Gomes, S. I. L., Murphy, M., Nielsen, M. T., Kristiansen, S. M., Amorim, M. J. B., & Scott-Fordsmand, J. J. (2015). Cu-nanoparticles ecotoxicity—Explored and explained? Chemosphere, 139, 240–245.
CAS
Article
Google Scholar
State Standard 16539-79. (1980). Reagents. Cupric oxide. Specifications. Moscow: Ministry of Chemical Industry of Russian Federation.
Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181, 287–300.
CAS
Article
Google Scholar
Hu, W., Culloty, S., Darmody, G., Lynch, S., Davenport, J., Ramirez-Garcia, S., et al. (2014). Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere, 108, 289–299.
CAS
Article
Google Scholar
Klementev, K. V. (2000). Package “VIPER (visual processing in EXAFS researches) for Windows.” Nuclear Instruments and Methods in Physics Research A., 448, 299–301.
CAS
Article
Google Scholar
Klementev, K. V. (2001). Extraction of the fine structure from X-ray absorption spectra. Journal of Physics D, 34, 209–217.
CAS
Article
Google Scholar
Ladonin, D. V., & Karpukhin, M. M. (2011). Fractional composition of nickel, copper, zinc, and lead compounds in soils polluted by oxides and soluble metal salts. Eurasian Soil Science, 8, 874–885.
Article
Google Scholar
Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27, 1915–1921.
CAS
Article
Google Scholar
Lindsay, W. L. (1979). Chemical equilibria in soil. New York: Wiley.
Google Scholar
Ma, J., Chen, Q.-L., O’Connor, P., & Sheng, G. D. (2020). Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environmental Pollution, 256, 113463.
CAS
Article
Google Scholar
Mandzhieva, S. S., Goncharova, LYu., Batukaev, A. A., Minkina, T. M., Bauer, T. V., Shertnev, A. K., et al. (2017). Current state of Haplic Chernozems in specially protected natural areas of the Steppe Zone. OnLine Journal of Biological Sciences, 17(4), 363–371.
CAS
Article
Google Scholar
Methodological Guidelines on the Determination of heavy Metals in Agricultural Soils and Crops. (1992). Moscow: TsINAO, 27 (in Russian).
Minkina, T. M., Linnik, V. G., Nevidomskaya, D. G., Bauer, T. V., Mandzhieva, S. S., & Khoroshavin, V. (2017). Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabashmed copper smelter. Journal of Soils and Sediments., 18(6), 2217–2228.
Article
Google Scholar
Minkina, T. M., Mandzhieva, S. S., Burachevskaya, M. V., Bauer, T. V., & Sushkova, S. N. (2018). Method of determining loosely bound compounds of heavy metals in the soil. MethodsX, 5, 217–226.
Article
Google Scholar
Minkina, T., Nevidomskaya, D., Burachevskaya, M., Bauer, T., Shuvaeva, V., Soldatov, A., et al. (2019a). Possibilities of chemical fractionation and X-ray spectral analysis in estimating the speciation of Cu2+ with soil solid-phase components. Applied Geochemistry, 102, 55–63.
CAS
Article
Google Scholar
Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., Sushkova, S., et al. (2019b). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 42, 45–58.
Article
Google Scholar
Navratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., Von der Kammer, F., & Hofmann, T. (2015). Detection of engineered copper nanoparticles in soil using single particle ICP-MS. International Journal of Environmental Research and Public Health, 12, 15756–15768.
CAS
Article
Google Scholar
Nekrasova, G. F., Ushakova, O. S., Ermakov, A. E., Uimin, M. A., & Byzov, I. V. (2011). Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology, 42(6), 458–463.
CAS
Article
Google Scholar
Newville, M. (2001). IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation., 8, 322–324.
CAS
Article
Google Scholar
Nie, G., Zhao, J., He, R., & Tang, Y. (2020). CuO nanoparticle exposure impairs the root tip cell walls of arabidopsis thaliana seedlings. Water, Air, & Soil Pollution, 231, 324.
CAS
Article
Google Scholar
Ogunkunle, C.O., Bornmann, B., Wagner, R., Fatoba, P.O., Frahm, R., & Luetzenkirchen-Hecht, D. (2017). Biotransformation evidence of copper nanoparticles in cowpea (Vigna unguiculata) by XANES. In: 12th DELTA User Meeting & Annual Report. Dortmund, 2016, pp 81–82. https://doi.org/10.13140/RG.2.2.11579.62249.
Peng, C., Tong, H., Shen, C., Sun, L., Yuan, P., He, M., & Shi, J. (2020). Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Science of The Total Environment, 713,. https://doi.org/10.1016/j.scitotenv.2020.136662.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234.
Article
Google Scholar
Pinskii, D. L., Minkina, T. M., Bauer, T. V., Nevidomskaya, D. G., Mandzhieva, S. S., & Burachevskaya, M. V. (2018). Copper adsorption by Chernozem soils and parent rocks in Southern Russia. Geochemistry International, 56(3), 266–275. https://doi.org/10.1134/S0016702918030072.
CAS
Article
Google Scholar
Ponizovskii, A. A., Studenikina, T. A., & Mironenko, E. V. (1999). Adsorption of copper (II) ions by soil as influenced by organic components of soil solutions. Eurasian Soil Science, 32, 766–775.
Google Scholar
Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii, N., Fedorenko, G., Dvadnenko, K., & Ghazaryan, K. (2018a) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum) Science of the Total Environment, 645, pp. 1103–1113. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.211
Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan, K., Movsesyan, H., & Barsova, N. (2019). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00317-3
Rajput, V. D., Minkina, T., Suskova, S., Mandzhieva, S., & Tsitsuashvili1, V., Chapligin, V., & Fedorenko, A. (2018). Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience, 8(1), 36–42.
Article
Google Scholar
Rawat, S., Pullagurala, V. L. R., Hernandez-Molina, M., Sun, Y., Niu, G., Hernandez-Viezcas, J. A., et al. (2018). Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environmental Science: Nano, 5, 83–95.
CAS
Google Scholar
Sekine, R., Marzouk, E. R., Khaksar, M., Scheckel, K. G., Stegemeier, J. P., Lowry, G. V., & Lombi, E. (2017). Aging of dissolved copper and copper-based nanoparticles in five different soils: short-term kinetics vs. long-term fate. Journal of Environment Quality, 46(6), 1198. https://doi.org/10.2134/jeq2016.12.0485
Servin, A. D., Pagano, L., Castillo-Michel, H., De la Torre-Roche, R., Hawthorne, J., Hernandez-Viezcas, J. A., et al. (2017). Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology, 11(1), 98–111. https://doi.org/10.1080/17435390.2016.1277274.
CAS
Article
Google Scholar
Shein, E. V. (2009). The particle-size distribution in soils. Problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science, 42(3), 284–291.
Singh, V., & Agrawal, H. M. (2012). Qualitative soil mineral analysis by EDXRF, XRD and AAS probes. Radiation Physics and Chemistry, 81(12), 1796–1803. https://doi.org/10.1016/j.radphyschem.2012.07.002.
CAS
Article
Google Scholar
Song, C., Ye, F., Zhang, H., Hong, J., Hua, C., Wang, B., et al. (2019). Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environmental Pollution, 255(3), 113354.
CAS
Article
Google Scholar
Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43(24), 9473–9479.
CAS
Article
Google Scholar
Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205.
CAS
Article
Google Scholar
Vinogradov, A. P. (1957). Geochemistry of rare and dispersed chemical elements in soils. Moscow: RAN. (in Russian).
Google Scholar
Voegelin, A., Pfister, S., Scheinost, A. C., Marcus, M. A., & Kretzshmar, R. (2005). Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science and Technology, 39(17), 6616–6123.
CAS
Article
Google Scholar
Vorob’eva, L. A. (2006). Theory and practice chemical analysis of soils. Moscow: GEOS. (in Russian).
Google Scholar
Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J.C., & Xing, B. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science and Technology, 46(8), 4434–4441.
Xia, K., Bleam, W., & Helmke, P. (1997). Studies of nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 61(11), 2223–2235.
CAS
Article
Google Scholar
Yusefi-Tanha E., Fallah, S., Rostamnejadi, A., & Pokhrel L. R. (2020). Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 715. https://doi.org/10.1016/j.scitotenv.2020.136994