Skip to main content

Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum

Abstract

In recent years, the study of the influence of nanoparticles (NPs) on the environment has attracted much interest as nanotechnology is becoming the key technology of the future generation. The comparative studies on the effects of macro- and nanosized copper oxide (CuO) on plants rarely cover the state and behaviour of CuO in the soil–plant system. This work considers the transformation of CuO in Haplic Chernozem depending on the degree of dispersion and its toxic effects on spring barley (Hordeum sativum) growth. To investigate the transformation of the studied particles of metal oxide in the soil and plant, both chemical method of analysis and synchrotron radiation X-ray powder diffraction, X-ray absorption near-edge structure spectroscopy (XANES) and X-ray absorption fine-structure spectroscopy (EXAFS) were used. It was shown that CuO NPs underwent a stronger transformation due to the high reactivity of smaller particles. The Cu mobility was observed to increase within the soil profile as confirmed by the model pollution experiment. This is mainly due to the formation of complex forms of metal with organic matter. A dose of 300 mg/kg of macro- and nanosized CuO did not significantly affect the development and productivity of spring barley. The effect of high doses of macro- and nanosized CuO (2000 and 10,000 mg/kg) had a negative impact on the growth of spring barley. The application of nanosized CuO had a greater toxic effect than the macrosized CuO on the plants. The XANES and EXAFS data revealed that CuO NPs accumulated in the soil and plants. The linear combination fit shown that Cu atoms, incorporated into the plants, have environment typical of CuO. This indicates a high environmental risk when soil is contaminated with CuO NPs compared with its arrival as CuO.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  • Ahmed, B., Rizvi, A., Zaidi, A., Khan, M. S., & Musarrat, J. (2019). Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation, and metallothionein production. RSC Advances, 9(8), 4210–4225. https://doi.org/10.1039/C8RA09305A.

    CAS  Article  Google Scholar 

  • Apodaca, S. A., Tan, W., Dominguez, O. E., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Science of The Total Environment, 599–600, 2085–2094.

    Article  Google Scholar 

  • Arendt, E. K., & Zannini, E. (2013). Cereal grains for the food and beverage industries (p. 512). Sawston, Cambridge: Woodhead Publishing Limited.

    Book  Google Scholar 

  • Bauer, T., Pinskii, D., Minkina, T., Nevidomskaya, D., Mandzhieva, S., Burachevskaya, M., et al. (2018). Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem. Science of the Total Environment, 626, 1100–1107. https://doi.org/10.1016/j.scitotenv.2018.01.134.

    CAS  Article  Google Scholar 

  • Burachevskaya, M. V., Minkina, T. M., Mandzhieva, S. S., Bauer, T. V., Chaplygin, V. A., Sushkova, S. N., et al. (2018). Comparing two methods of sequential fractionation in the study of copper compounds in Haplic Chernozem under model experimental conditions. Journal of Soils and Sediments, 18(6), 2379–2386.

    CAS  Article  Google Scholar 

  • Chernyshov, A. A., Veligzhanin, A. A., & Zubavichus, Y. V. (2009). Structural materials science end-station at the Kurchatov Synchrotron radiation Source: recent instrumentation upgrades and experimental results. Nuclear Instruments and Methods in Physics in Research A, 603, 95–98.

    CAS  Article  Google Scholar 

  • Deng, F., Wang, S., & Xin, H. (2016). Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology, 97, 702–708.

    CAS  Article  Google Scholar 

  • Fajardo, C., Costa, G., Nand, M., Martín, C., Martín, M., & Sánchez-Fortún, S. (2019). Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Science of The Total Environment, 656, 421–432.

    CAS  Article  Google Scholar 

  • Fedorenko, A. G., Minkina, T. M., Chernikova, N. P., Fedorenko, G. M., Mandzhieva, S. S., Rajput, V. D., et al. (2020). The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00530-5.

    Article  Google Scholar 

  • Fedotov, G. N., Pakhomov, E. I., Pozdnyakov, A. I., Kuklin, A. I., Islamov, A. K., & Putlyaev, V. I. (2007). Structure and properties of soil organic-mineral gel. Eurasian Soil Science, 40(9), 956–961.

    Article  Google Scholar 

  • Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., & Lowry, G. V. (2018). CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environmental Science & Technology, 52(5), 2888–2897. https://doi.org/10.1021/acs.est.7b05816.

    CAS  Article  Google Scholar 

  • Ghasemi, S. N., Fallah, S., Pokhrel, L. R., & Rostamnejadi, A. (2017). Natural amelioration of zinc oxide nanoparticles toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiology and Biochemistry., 112, 227–238.

    Article  Google Scholar 

  • Gomes, S. I. L., Murphy, M., Nielsen, M. T., Kristiansen, S. M., Amorim, M. J. B., & Scott-Fordsmand, J. J. (2015). Cu-nanoparticles ecotoxicity—Explored and explained? Chemosphere, 139, 240–245.

    CAS  Article  Google Scholar 

  • State Standard 16539-79. (1980). Reagents. Cupric oxide. Specifications. Moscow: Ministry of Chemical Industry of Russian Federation.

  • Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environmental Pollution, 181, 287–300.

    CAS  Article  Google Scholar 

  • Hu, W., Culloty, S., Darmody, G., Lynch, S., Davenport, J., Ramirez-Garcia, S., et al. (2014). Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere, 108, 289–299.

    CAS  Article  Google Scholar 

  • Klementev, K. V. (2000). Package “VIPER (visual processing in EXAFS researches) for Windows.” Nuclear Instruments and Methods in Physics Research A., 448, 299–301.

    CAS  Article  Google Scholar 

  • Klementev, K. V. (2001). Extraction of the fine structure from X-ray absorption spectra. Journal of Physics D, 34, 209–217.

    CAS  Article  Google Scholar 

  • Ladonin, D. V., & Karpukhin, M. M. (2011). Fractional composition of nickel, copper, zinc, and lead compounds in soils polluted by oxides and soluble metal salts. Eurasian Soil Science, 8, 874–885.

    Article  Google Scholar 

  • Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27, 1915–1921.

    CAS  Article  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soil. New York: Wiley.

    Google Scholar 

  • Ma, J., Chen, Q.-L., O’Connor, P., & Sheng, G. D. (2020). Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? Environmental Pollution, 256, 113463.

    CAS  Article  Google Scholar 

  • Mandzhieva, S. S., Goncharova, LYu., Batukaev, A. A., Minkina, T. M., Bauer, T. V., Shertnev, A. K., et al. (2017). Current state of Haplic Chernozems in specially protected natural areas of the Steppe Zone. OnLine Journal of Biological Sciences, 17(4), 363–371.

    CAS  Article  Google Scholar 

  • Methodological Guidelines on the Determination of heavy Metals in Agricultural Soils and Crops. (1992). Moscow: TsINAO, 27 (in Russian).

  • Minkina, T. M., Linnik, V. G., Nevidomskaya, D. G., Bauer, T. V., Mandzhieva, S. S., & Khoroshavin, V. (2017). Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabashmed copper smelter. Journal of Soils and Sediments., 18(6), 2217–2228.

    Article  Google Scholar 

  • Minkina, T. M., Mandzhieva, S. S., Burachevskaya, M. V., Bauer, T. V., & Sushkova, S. N. (2018). Method of determining loosely bound compounds of heavy metals in the soil. MethodsX, 5, 217–226.

    Article  Google Scholar 

  • Minkina, T., Nevidomskaya, D., Burachevskaya, M., Bauer, T., Shuvaeva, V., Soldatov, A., et al. (2019a). Possibilities of chemical fractionation and X-ray spectral analysis in estimating the speciation of Cu2+ with soil solid-phase components. Applied Geochemistry, 102, 55–63.

    CAS  Article  Google Scholar 

  • Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., Sushkova, S., et al. (2019b). Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health, 42, 45–58.

    Article  Google Scholar 

  • Navratilova, J., Praetorius, A., Gondikas, A., Fabienke, W., Von der Kammer, F., & Hofmann, T. (2015). Detection of engineered copper nanoparticles in soil using single particle ICP-MS. International Journal of Environmental Research and Public Health, 12, 15756–15768.

    CAS  Article  Google Scholar 

  • Nekrasova, G. F., Ushakova, O. S., Ermakov, A. E., Uimin, M. A., & Byzov, I. V. (2011). Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology, 42(6), 458–463.

    CAS  Article  Google Scholar 

  • Newville, M. (2001). IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation., 8, 322–324.

    CAS  Article  Google Scholar 

  • Nie, G., Zhao, J., He, R., & Tang, Y. (2020). CuO nanoparticle exposure impairs the root tip cell walls of arabidopsis thaliana seedlings. Water, Air, & Soil Pollution, 231, 324.

    CAS  Article  Google Scholar 

  • Ogunkunle, C.O., Bornmann, B., Wagner, R., Fatoba, P.O., Frahm, R., & Luetzenkirchen-Hecht, D. (2017). Biotransformation evidence of copper nanoparticles in cowpea (Vigna unguiculata) by XANES. In: 12th DELTA User Meeting & Annual Report. Dortmund, 2016, pp 81–82. https://doi.org/10.13140/RG.2.2.11579.62249.

  • Peng, C., Tong, H., Shen, C., Sun, L., Yuan, P., He, M., & Shi, J. (2020). Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Science of The Total Environment, 713,. https://doi.org/10.1016/j.scitotenv.2020.136662.

  • Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234.

    Article  Google Scholar 

  • Pinskii, D. L., Minkina, T. M., Bauer, T. V., Nevidomskaya, D. G., Mandzhieva, S. S., & Burachevskaya, M. V. (2018). Copper adsorption by Chernozem soils and parent rocks in Southern Russia. Geochemistry International, 56(3), 266–275. https://doi.org/10.1134/S0016702918030072.

    CAS  Article  Google Scholar 

  • Ponizovskii, A. A., Studenikina, T. A., & Mironenko, E. V. (1999). Adsorption of copper (II) ions by soil as influenced by organic components of soil solutions. Eurasian Soil Science, 32, 766–775.

    Google Scholar 

  • Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii, N., Fedorenko, G., Dvadnenko, K., & Ghazaryan, K. (2018a) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum) Science of the Total Environment, 645, pp. 1103–1113. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.211

  • Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan, K., Movsesyan, H., & Barsova, N. (2019). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00317-3

  • Rajput, V. D., Minkina, T., Suskova, S., Mandzhieva, S., & Tsitsuashvili1, V., Chapligin, V., & Fedorenko, A. (2018). Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience, 8(1), 36–42.

    Article  Google Scholar 

  • Rawat, S., Pullagurala, V. L. R., Hernandez-Molina, M., Sun, Y., Niu, G., Hernandez-Viezcas, J. A., et al. (2018). Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environmental Science: Nano, 5, 83–95.

    CAS  Google Scholar 

  • Sekine, R., Marzouk, E. R., Khaksar, M., Scheckel, K. G., Stegemeier, J. P., Lowry, G. V., & Lombi, E. (2017). Aging of dissolved copper and copper-based nanoparticles in five different soils: short-term kinetics vs. long-term fate. Journal of Environment Quality, 46(6), 1198. https://doi.org/10.2134/jeq2016.12.0485

  • Servin, A. D., Pagano, L., Castillo-Michel, H., De la Torre-Roche, R., Hawthorne, J., Hernandez-Viezcas, J. A., et al. (2017). Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology, 11(1), 98–111. https://doi.org/10.1080/17435390.2016.1277274.

    CAS  Article  Google Scholar 

  • Shein, E. V. (2009). The particle-size distribution in soils. Problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science, 42(3), 284–291.

  • Singh, V., & Agrawal, H. M. (2012). Qualitative soil mineral analysis by EDXRF, XRD and AAS probes. Radiation Physics and Chemistry, 81(12), 1796–1803. https://doi.org/10.1016/j.radphyschem.2012.07.002.

    CAS  Article  Google Scholar 

  • Song, C., Ye, F., Zhang, H., Hong, J., Hua, C., Wang, B., et al. (2019). Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environmental Pollution, 255(3), 113354.

    CAS  Article  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology, 43(24), 9473–9479.

    CAS  Article  Google Scholar 

  • Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205.

    CAS  Article  Google Scholar 

  • Vinogradov, A. P. (1957). Geochemistry of rare and dispersed chemical elements in soils. Moscow: RAN. (in Russian).

    Google Scholar 

  • Voegelin, A., Pfister, S., Scheinost, A. C., Marcus, M. A., & Kretzshmar, R. (2005). Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science and Technology, 39(17), 6616–6123.

    CAS  Article  Google Scholar 

  • Vorob’eva, L. A. (2006). Theory and practice chemical analysis of soils. Moscow: GEOS. (in Russian).

    Google Scholar 

  • Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J.C., & Xing, B. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science and Technology, 46(8), 4434–4441.

  • Xia, K., Bleam, W., & Helmke, P. (1997). Studies of nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 61(11), 2223–2235.

    CAS  Article  Google Scholar 

  • Yusefi-Tanha E., Fallah, S., Rostamnejadi, A., & Pokhrel L. R. (2020). Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 715. https://doi.org/10.1016/j.scitotenv.2020.136994

Download references

Acknowledgements

The reported study was funded by the Russian Science Foundation, no. 19-74-00085.

Funding

The Russian Science Foundation is acknowledged for providing funding in the project no.: 19–74-00085.

Author information

Authors and Affiliations

Authors

Contributions

MB contributed to data curation, formal analysis, methodology, investigation, conceptualization, supervision, visualization, writing—original draft preparation—review and editing. TM, SM and TB helped in conceptualization, supervision, writing—review and editing. DN performed data curation, methodology, visualization, conceptualization, supervision, and writing—review and editing. VS done the investigation, data curation, visualization, formal analysis, writing—review and editing, and methodology. SS contributed to formal analysis, methodology, writing—review and editing. RK and CG helped in conceptualization and supervision. VR contributed to data curation, methodology, conceptualization, supervision, and writing—review and editing.

Corresponding author

Correspondence to Marina Burachevskaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable since the manuscript has not been involved in the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burachevskaya, M., Minkina, T., Mandzhieva, S. et al. Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environ Geochem Health 43, 1655–1672 (2021). https://doi.org/10.1007/s10653-021-00857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00857-7

Keywords

  • Haplic Chernozem
  • Macro- and nanosized CuO
  • XRD
  • XANES
  • EXAFS
  • Toxic effect