Skip to main content

Phytoremediation of potentially toxic elements using constructed wetlands in coastal areas with a mining influence

Abstract

This paper proposes the use of wetlands as a phytoremediation strategy for areas of mining and maritime influence in the southeast of Spain. Potentially toxic elements (PTEs) tolerant and salinity-resistant macrophytes (Phragmites australis, Juncus effusus and Iris pseudacorus) have been used. The experiment is carried out in an aerobic artificial wetland using representative sediments affected by mining activities in the study area. Selected species were placed in pots containing substrates made with different mixtures of topsoil and/or peat, mining residues (black or yellow sand). After six months, rhizosphere, root and aerial parts were collected. A transfer study of As, Pb, Zn and Cu is performed, determining contents in rhizosphere and plant (aerial and underground part). From these data, the TF and BCF were calculated for each plant in 15 different substrates. The work is complemented by an initial study of scanning electron microscopy (SEM–EDX) of plants. The obtained results indicate a tolerance of the metallophytes to these PTEs, which may favour the obtaining of a naturalized habitat that acts as an effective protective barrier to the ecosystem, that is easy to maintain and that avoid the risk of transfer to the trophic chain. The use of these species can be a complement to the chemical stabilization proposed for the whole area and carried out in experimental plots. Because they are perennial plants, it is necessary to continue with the experiments and obtain results in a longer period of time that allows to evaluate yield and stabilization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Yes, data and material are available.

References

  1. Abreu, M. M., Godinho, B., & Magalhaes, M. C. (2014). Risk assessment of Arbutus unedo L. fruits from plants growing on contaminated soils in the Panasqueira mine area Portugal. Journal of Soils and Sediments, 14, 744–757.

    Article  Google Scholar 

  2. Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    CAS  Article  Google Scholar 

  3. Boonsrang, A., Chotpantarat, S., & Sutthirat, C. (2017). Factors controlling the release of metals and a metalloid from the tailings of a gold mine in Thailand. Geochemistry: Exploration Environment, Analysis, 18, 109–119.

    Google Scholar 

  4. Caldelas, C., Araus, J. L., Febrero, A., & Bort, J. (2012). Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiologiae Plantarum, 34, 1217–1228.

    CAS  Article  Google Scholar 

  5. Cheng, R., Zhu, H., Cheng, X., Shutes, B., & Yan, B. (2020). Saline and alkaline tolerance of wetland plants what are the most representative evaluation indicators. Sustainability, 12, 1913.

    CAS  Article  Google Scholar 

  6. Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.

    CAS  Article  Google Scholar 

  7. Falagan, C., Grail, B. M., & Johnson, D. B. (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106, 71–78.Fediuc, E., & Erdei, L. (2002). Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. Journal of Plant Physiology, 159, 265–271.

    Google Scholar 

  8. García-Lorenzo, M. L., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Molina-Ruiz, J., Martínez, S., Arroyo, X., et al. (2019). Potential bioavailability assessment and distribution of heavy metal(oids) in cores from Portman Bay (SE, Spain). Geochemistry: Exploration Environment, Analysis, 19, 193–200.

    Google Scholar 

  9. García-Lorenzo, M. L., Pérez-Sirvent, C., Martínez-Sánchez, M. J., & Molina-Ruiz, J. (2012). Trace elements contamination in an abandoned mining site in a semiarid zone. Journal of Geochemical Exploration, 113, 23–35.

    Article  Google Scholar 

  10. Gazea, B., Adam, K., & Kontopoulos, A. (1996). A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, 9, 23–42.

    CAS  Article  Google Scholar 

  11. González-Alcaraz, M. N., & van Gestel, C. A. M. (2017). Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness. Geoderma, 289, 20–28.

    Article  Google Scholar 

  12. Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117–152.

    CAS  Article  Google Scholar 

  13. Kramer, U. (2010). Metal Hyperaccumulation in Plants. Annual Review of Plant Biology, 61, 517–534.

    Article  Google Scholar 

  14. Ma, H., Gao, F., Zhang, X., Cui, B., Liu, Y., & Li, Z. (2020). Formation of iron plaque on roots of Iris pseudacorus and its consequence for cadmium immobilization is impacted by zinc concentration. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.110306.

    Article  Google Scholar 

  15. Madera-Parra, C. A., Peña-SalamancaE, J., Peña, M. R., RousseauD, P. L., & Lens, P. N. L. (2015). Phytoremediation of Landfill Leachate with Colocasiaesculenta, Gynerumsagittatum and Heliconia psittacorum in Constructed Wetlands. International Journal of Phytoremediation., 17, 16–24.

    CAS  Article  Google Scholar 

  16. Marchand, L., Mench, M., Jacob, D. J., & Otte, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environmental Pollution, 158, 3447–3461.

    CAS  Article  Google Scholar 

  17. María-Cervantes, A., Conesa, H. M., González-Alcaraz, M. N., & Álvarez-Rogel, J. (2010). Rhizosphere and flooding regime as key factors for the mobilisation of arsenic and potentially harmful metals in basic, mining-polluted salt marsh soils. Applied Geochemistry, 25, 1722–1733.

    Article  Google Scholar 

  18. Martin, D., 2019. Qualitative, Quantitative and Microtextural Powder X‐ray Diffraction Analysis. http://www.xpowder.com/. Accessed 07 January 2021.

  19. Martínez-Sánchez, M. J., Pérez-Sirvent, C., García-Lorenzo, M. L., Martínez-López, S., Bech, J., Hernandez, C., et al. (2017). Ecoefficient in situ technologies for the remediation of sites affected by old mining activities: The case of Portman Bay. Assessment, restoration and reclamation of mining influenced soils. London: Academic Press.

    Google Scholar 

  20. Martínez-Sánchez, M. J., Navarro, M. C., Pérez-Sirvent, C., Marimón, J., Vidal, J., García-Lorenzo, M. L., & Bech, J. (2008). Assessment of the mobility of metals in a mining-impacted coastal area (Spain, Western Mediterranean). Journal of Geochemical Exploration, 96, 171–182.

    Article  Google Scholar 

  21. Matthews, D. J., Moran, B. M., & Otte, M. L. (2004). Zinc tolerance, uptake, and accumulation in the wetland plants Eriophorum angustifolium, Juncus effusus, and Juncus articulatus. Wetlands, 24, 859–869.

    Article  Google Scholar 

  22. Milke, J., Gałczy nska, M., & Wróbel, J. (2020). Importance of biological and ecological properties of phragmites Australis (Cav) Trin Ex Steud, in phytoremendiation of aquatic ecosystems—the review. Water, 12, 1770.

    CAS  Article  Google Scholar 

  23. Nada, R. M., Khedr, A. H. A., Serag, M. S., & El-Nagar, N. A. (2015). Growth, photosynthesis and stress-inducible genes of Phragmites australis (Cav.) Trin. Ex Steudel from different habitats. Aquatic Botany, 124, 54–62.

    CAS  Article  Google Scholar 

  24. Oyarzun, R., Manteca Martínez, J. I., López García, J. A., & Carmona, C. (2013). An account of the events that led to full bay infilling with sulfide tailings at Portman (Spain), and the search for “black swans” in a potential land reclamation scenario. Science of the Total Environment, 454–455, 245–249.

    Article  Google Scholar 

  25. Pérez-Sirvent, C., García-Lorenzo, M. L., Martínez-Sánchez, M. J., Navarro, M. C., Marimón, J., & Bech, J. (2007). Metal-contaminated soil remediation by using sludges of the marble industry: Toxicological evaluation. Environmental International, 33, 502–504.

    Article  Google Scholar 

  26. Pérez-Sirvent, C., García-Lorenzo, M. L., Martínez-Sánchez, M. J., Molina-Ruiz, J., Marimon, J., & Navarro, M. C. (2011). Use of marble cutting sludges for remediating soils and sediments contaminated by heavy metals. Environmental Progress and Sustainable Energy, 30, 533–539.

    Article  Google Scholar 

  27. Perez-Sirvent, C., Martinez-Sanchez, M. J., Martinez-Lopez, S., Bech, J., & Bolan, N. (2012). Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. Journal of Geochemical Exploration, 123, 128–135.

    CAS  Article  Google Scholar 

  28. Pérez-Sirvent, C., Hernández-Pérez, C., Martínez-Sánchez, M. J., García-Lorenzo, M. L., & Bech, J. (2017). Metal uptake by wetland plants: implications for phytoremediation and restoration. Journal of Soils and Sediments, 17, 1384–1393.

    Article  Google Scholar 

  29. Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, 407–411.

    Article  Google Scholar 

  30. Syranidou, E., Christofilopoulos, S., & Kalogerakis, N. (2016). Juncus spp—the helophyte for all (phyto) remediation purposes? New Biotechnology. https://doi.org/10.1016/j.nbt.2016.12.005.

    Article  Google Scholar 

  31. Valente, T. M., Antunes, M. D., Braga, M. A. S., & Pamplona, J. M. (2011). Geochemistry and mineralogy of ochre-precipitates formed as waste products of passive mine water treatment. Geochemistry: Exploration Environment, Analysis, 11, 103–106.

    CAS  Google Scholar 

  32. Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environmental International, 30, 685–700.

    CAS  Article  Google Scholar 

  33. Wężowicz, K., Turnau, K., Anielska, T., Zhebrak, I., Gołuszka, K., Błaszkowski, J., & Rozpądek, P. (2015). Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environmental science and pollution research international, 22(24), 19400–19407.

    Article  Google Scholar 

  34. Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (1998). Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the rootsurface. Aquatic Botany, 61, 55–67.

    CAS  Article  Google Scholar 

  35. Zhang, X., Liu, P., Yang, Y., & Chen, W. (2007). Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. Journal of environmental sciences (China), 19, 902–909.

    CAS  Article  Google Scholar 

Download references

Funding

Funding

Not applicable, No external funding

Author information

Affiliations

Authors

Contributions

CHP was involved in experimental research, data collection and first draft; MJMS performed planning and management of the experiment and wrote the manuscript; MLG wrote the manuscript; JB done review and coordination; CPS is a corresponding author, performed planning and management of the experiment and wrote the manuscript.

Corresponding author

Correspondence to Carmen Pérez-Sirvent.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Yes.

Consent to participate

Yes.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández-Pérez, C., Martínez-Sánchez, M.J., García-Lorenzo, M.L. et al. Phytoremediation of potentially toxic elements using constructed wetlands in coastal areas with a mining influence. Environ Geochem Health 43, 1385–1400 (2021). https://doi.org/10.1007/s10653-021-00843-z

Download citation

Keywords

  • Phytoremediation
  • Metallophytes
  • Natural attenuation
  • Wetland
  • Potentially toxic elements
  • Acid mine drainage
  • Coastal areas
  • Mining sites