Sorption of brilliant green dye using soybean straw-derived biochar: characterization, kinetics, thermodynamics and toxicity studies

Abstract

The present study was aimed to investigate brilliant green (BG) dye sorption onto soybean straw biochar (SSB) prepared at 800 °C and further understanding the sorption mechanism. Sorption kinetic models such as pseudo-first and pseudo-second order were executed for demonstrating sorption mechanism between the dye and biochar. Results of kinetics study were fitted well to pseudo-second-order kinetic model (R2 0.997) indicating that the reaction followed chemisorption mechanism. Furthermore, the effect of various parameters like sorbent dose, dye concentration, incubation time, pH and temperature on dye sorption was also studied. The maximum dye removal percentage and sorption capacity for SSB (800 °C) within 60 min were found to be 99.73% and 73.50 mg g− 1, respectively, at pH 8 and 60 °C temperature, whereas adsorption isotherm studies showed a higher correlation coefficient values for Freundlich model (R2 0.990–0.996) followed by Langmuir model suggesting that sorption process was multilayer. The characterization of biomass and biochar was performed with the aid of analytical techniques like scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) theory, X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). FTIR analysis showed active groups on biochar surface. BET study revealed higher surface area of biochar (194.7 m2/g) than the biomass (12.84 m2/g). Besides, phyto- and cytogenotoxic studies revealed significant decrease in the toxicity of dye containing water after treating with SSB. Therefore, this study has proved the sorption potential of soybean straw biochar for BG dye and could be further considered as sustainable cost-effective strategy for treating the textile dye-contaminated wastewater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abd El-Latif, M. M., Ibrahim, A. M., & El-Kady, M. F. (2010). Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. Journal of American Science, 6, 267–283.

    Google Scholar 

  2. Ahmad, M. A., & Alrozi, R. (2011). Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 171, 510–516. https://doi.org/10.1016/j.cej.2011.04.018.

    CAS  Article  Google Scholar 

  3. Ali, I., & Gupta, V. K. (2007). Advances in water treatment by adsorption technology. Nature Protocols, 1, 2661–2667.

    Article  Google Scholar 

  4. Ali, I., Khan, T. A., & Asim, M. (2011). Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Separation & Purification Reviews, 40(1), 25–42. https://doi.org/10.1080/15422119.2011.542738.

    CAS  Article  Google Scholar 

  5. Ali, I., Asim, M., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028.

    CAS  Article  Google Scholar 

  6. Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337, 1–18.

    CAS  Article  Google Scholar 

  7. Bazrafshan, E., Mostafapour, F., & Zazouli, M. A. (2012). Methylene blue (cationic dye) adsorption into Salvadora persica stems ash. African Journal of Biotechnology, 11, 16661–16668. https://doi.org/10.5897/AJB12.1390.

    CAS  Article  Google Scholar 

  8. Bello, O. S., Siang, T. T., & Ahmad, M. A. (2012). Adsorption of Remazol Brilliant Violet-5R reactive dye from aqueous solution by cocoa pod husk-based activated carbon: Kinetic, equilibrium and thermodynamic studies. Asia-Pacific Journal of Chemical Engineering, 7(3), 378–388. https://doi.org/10.1002/apj.557.

    CAS  Article  Google Scholar 

  9. Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., & Antal, M. J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Industrial and Engineering Chemistry Research, 46, 5954–5967. https://doi.org/10.1021/ie070415u.

    CAS  Article  Google Scholar 

  10. Burchmore, S., & Wilkinson, M. (1993). Department of the Environment, Water Research Center, Marlow, Buckinghamshire, United Kingdom. Report no. 316712. Carcinogenesis, 12, 839–845.

    Google Scholar 

  11. Chen, Y.-D., Lin, Y.-C., Ho, S.-H., Zhou, Y., & Ren, N.-Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource Technology, 259, 104–110. https://doi.org/10.1016/j.biortech.2018.02.094.

    CAS  Article  Google Scholar 

  12. Choi, Y.-K., & Kan, E. (2019). Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water. Chemosphere, 218, 741–748. https://doi.org/10.1016/j.chemosphere.2018.11.151.

    CAS  Article  Google Scholar 

  13. Chowdhury, A. K., Sarkar, A. D., & Bandyopadhyay, A. (2009). Rice husk ash as a low cost adsorbent for the removal of methylene blue and congo red in aqueous phases. CLEAN-Soil Air Water, 37(7), 581–591. https://doi.org/10.1002/clen.200900051.

    CAS  Article  Google Scholar 

  14. Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364. https://doi.org/10.1080/10643389.2011.574115.

    CAS  Article  Google Scholar 

  15. FAOSTAT. Food and Agriculture Organization of United Nations (2017). Production, crops, soybeans. Available online. (Retrieved 1 September 2017) http://faostat.fao.org/.

  16. Feng, Y., Zhou, H., Liu, G., Qiao, J., Wang, J., Lu, H., et al. (2012). Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: Equilibrium, kinetic and adsorption mechanisms. Bioresource Technology, 125, 138–144. https://doi.org/10.1016/j.biortech.2012.08.128.

    CAS  Article  Google Scholar 

  17. Fiskesjo, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x.

    CAS  Article  Google Scholar 

  18. Ghaedi, M., Hossainian, H., Montazerozohori, M., Shokrollahi, A., Shojaipour, F., Soylak, M., et al. (2011). A novel acorn based adsorbent for the removal of brilliant green. Desalination, 281, 226–233. https://doi.org/10.1016/j.desal.2011.07.068.

    CAS  Article  Google Scholar 

  19. Gil, M. V., Casal, D., Pevida, C., Pis, J. J., & Rubiera, F. (2010). Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technology, 101(14), 5601–5608. https://doi.org/10.1016/j.biortech.2010.02.008.

    CAS  Article  Google Scholar 

  20. Guerrero, M., Ruiz, M. P., Millera, A., Alzueta, M. U., & Bilbao, R. (2008). Characterization of biomass chars formed under different devolatilization conditions: differences between rice husk and eucalyptus. Energy & Fuel, 22, 1275–1284. https://doi.org/10.1021/ef7005589.

    CAS  Article  Google Scholar 

  21. Gupta, V. K., & Suhas, (2009). Application of low-cost adsorbents for dye removal—a review. Journal of Environmental Management, 90(8), 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017.

    CAS  Article  Google Scholar 

  22. Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dyes (Rhodamine B and Methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35(13), 2097–2113. https://doi.org/10.1081/SS-100102091.

    CAS  Article  Google Scholar 

  23. Gurav, R., Bhatia, S. K., Choi, T. R., Park, Y. L., Park, J. Y., Han, Y. H., et al. (2020). Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites. Bioresource Technology, 297, 122472. https://doi.org/10.1016/j.biortech.2019.122472.

    CAS  Article  Google Scholar 

  24. Gurav, R., Bhatia, S. K., Choi, T.-R., Choi, Y.-K., Kim, H. J., Song, H.-S., et al. (2021). Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere, 264, 128539. https://doi.org/10.1016/j.chemosphere.2020.128539.

    CAS  Article  Google Scholar 

  25. Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158(1), 65–72. https://doi.org/10.1016/j.jhazmat.2008.01.034.

    CAS  Article  Google Scholar 

  26. Han, R., Wang, Yi, Zou, W., Wang, Y., & Shi, J. (2007). Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. Journal of Hazardous Materials, 145(1–2), 331–335. https://doi.org/10.1016/j.jhazmat.2006.12.027.

    CAS  Article  Google Scholar 

  27. Ho, Y. S., Chiu, W. T., & Wang, C. C. (2005). Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresource Technology, 96, 1285–1291. https://doi.org/10.1016/j.biortech.2004.10.021.

    CAS  Article  Google Scholar 

  28. Jadhav, S. B., Phugare, S. S., Patil, P. S., & Jadhav, J. P. (2011). Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. International Biodeterioration and Biodegradation, 65(6), 733–743. https://doi.org/10.1016/j.ibiod.2011.04.003.

    CAS  Article  Google Scholar 

  29. Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass derived black carbon (Biochar). Environmental Science and Technology, 44(4), 1247–1253. https://doi.org/10.1021/es9031419.

    CAS  Article  Google Scholar 

  30. Kolton, M., Harel, Y. M., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied & EnvironmentalMicrobiology, 77(14), 4924–4930. https://doi.org/10.1128/AEM.00148-11.

    CAS  Article  Google Scholar 

  31. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management : science and technology (pp. 1–9). UK and USA: Earthscan Publisher.

    Google Scholar 

  32. Moore, J. W., & Ramamoorthy, S. (1984). Heavy metals in natural waters: Applied monitoring and impact assessment (p. 268). New York: Springer.

    Google Scholar 

  33. Mui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010). Dye adsorption onto char from bamboo. Journal of Hazardous Materials, 177(1–3), 1001–1005. https://doi.org/10.1016/j.jhazmat.2010.01.018.

    CAS  Article  Google Scholar 

  34. Nagia, F. A., & EL-Mohamedy, R. S. R. (2007). Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes and Pigments, 75(3), 550–555. https://doi.org/10.1016/j.dyepig.2006.07.002.

    CAS  Article  Google Scholar 

  35. Pagga, U., & Brown, D. (1986). The degradation of dyestuffs: Part II Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere, 15(4), 479–491. https://doi.org/10.1016/0045-6535(86)90542-4.

    CAS  Article  Google Scholar 

  36. Patil, B. C., & Bhat, G. I. (1992). A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternatea L. The Japan Mendel Society Cytologia, 57, 259–264. https://doi.org/10.1508/cytologia.57.259.

    CAS  Article  Google Scholar 

  37. Reife, A. (2000). Dyes, environmental chemistry. In Kirk-Othmer Encyclopedia of chemical technology. Wiley, Hoboken

  38. Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1–3), 1–13. https://doi.org/10.1016/j.desal.2011.07.019.

    CAS  Article  Google Scholar 

  39. Santhi, T., Manonmani, S., & Smitha, T. (2010). Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. Journal of Hazardous Materials, 179(1–3), 178–186. https://doi.org/10.1016/j.jhazmat.2010.02.076.

    CAS  Article  Google Scholar 

  40. Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48, 516–525. https://doi.org/10.1071/SR10058.

    CAS  Article  Google Scholar 

  41. Somasekhara Reddy, M. C., Sivaramakrishna, L., & Varada Reddy, A. (2012). The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. Journal of Hazardous Materials, 203–204, 118–127. https://doi.org/10.1016/j.jhazmat.2011.11.083.

    CAS  Article  Google Scholar 

  42. Sun, P., Hui, C., Khan, R. A., Du, J., Zhang, Q., & Zhao, Y. H. (2015). Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. ScientificReports, 5, 12638. https://doi.org/10.1038/srep12638.

    CAS  Article  Google Scholar 

  43. Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012.

    CAS  Article  Google Scholar 

  44. Vyavahare, G. D., Gurav, R. G., Jadhav, P. P., Patil, R. R., Aware, C. B., & Jadhav, J. P. (2018). Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 194, 306–315. https://doi.org/10.1016/j.chemosphere.2017.11.180.

    CAS  Article  Google Scholar 

  45. Vyavahare, G., Jadhav, P., Jadhav, J., Patil, R., Aware, C., Patil, D., et al. (2019). Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. Journal of Cleaner Production, 207, 296–305. https://doi.org/10.1016/j.jclepro.2018.09.193.

    CAS  Article  Google Scholar 

  46. Wang, S., Wang, K., Dai, C., Shi, H., & Li, J. (2015). Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite. Chemical Engineering Journal, 262, 897–903. https://doi.org/10.1016/j.cej.2014.10.035.

    CAS  Article  Google Scholar 

  47. Weng, C. H., & Pan, Y. F. (2006). Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274(1–3), 154–162. https://doi.org/10.1016/j.colsurfa.2005.08.044.

    CAS  Article  Google Scholar 

  48. Weng, C. H., Lin, Y. T., Hong, D. Y., Sharma, Y. C., Chen, S. C., & Tripathi, K. (2014). Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecological Engineering, 67, 127–133. https://doi.org/10.1016/j.ecoleng.2014.03.053.

    Article  Google Scholar 

  49. Wua, W., Yang, M., Feng, Q., McGrouther, K., Wangb, H., Lu, H., et al. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 4, 268–276. https://doi.org/10.1016/j.biombioe.2012.09.034.

    CAS  Article  Google Scholar 

  50. Yagub, M. T., Sen, T. K., & Ang, H. M. (2012). Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil Pollution, 223, 5267–5282. https://doi.org/10.1007/s11270-012-1277-3.

    CAS  Article  Google Scholar 

  51. Yi, Q., Qi, F., Cheng, G., Zhang, Y., Xiao, B., Hu, Z., et al. (2013). Thermogravimetric analysis of co-combustion of biomass and biochar. Journal of Thermal Analysis and Calorimetry, 112(3), 1475–1479. https://doi.org/10.1007/s10973-012-2744-1.

    CAS  Article  Google Scholar 

  52. Yihunu, E. W., Minale, M., Abebe, S., & Limin, M. (2019). Preparation, characterization and cost analysis of activated biochar and hydrochar derived from agricultural waste: a comparative study. SN Applied Sciences, 1, 873. https://doi.org/10.1007/s42452-019-0936-z.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

G. Vyavahare would like to thank Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Government of Maharashtra, for providing CMSRF fellowship. R. Gurav wishes to thank Konkuk University, Seoul, South Korea, for providing financial support under KU-Research Professor Programme-2020. R. Patil is grateful to National Post-Doctorate Fellowship funded by SERB (DST) India, for providing fellowship. S. Sutar would like to thank Shivaji University, Kolhapur, for awarding PURSE fellowship. D. Patil also wishes to acknowledge DST for providing INSPIRE fellowship. Y. H. Yang greatly appreciates financial support from National Research Foundation of Korea (NRF) (NRF-2019R1F1A1058805, NRF-2019M3E6A1103979), Research Program to solve social issues of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, South Korea (2017M3A9E4077234).

Author information

Affiliations

Authors

Contributions

Govind Vyavahare contributed to conceptualization, methodology and writing—original draft. Ranjit Gurav was involved in conceptualization, validation and supervision. Ravishankar Patil and Jingchun Tang contributed to validation. Shubham Sutar and Sangeeta Kale were involved in formal analysis. Pooja Jadhav contributed to visualization. Devashree Patil was involved in methodology. Yung-HunYang contributed to writing—review and editing. Chetan Chavan was involved in resources. Jyoti Jadhav contributed to writing—review and editing, funding acquisition and supervision.

Corresponding author

Correspondence to Jyoti Jadhav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vyavahare, G., Gurav, R., Patil, R. et al. Sorption of brilliant green dye using soybean straw-derived biochar: characterization, kinetics, thermodynamics and toxicity studies. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-020-00804-y

Download citation

Keywords

  • Biochar
  • Brilliant green
  • Kinetics
  • Soybean straw
  • Thermodynamics
  • Toxicity