Metal distribution, bioavailability and isotope variations in polluted soils from Lower Swansea Valley, UK

Abstract

Soils in the Lower Swansea Valley, (United Kingdom) contain elevated level of metals, enough to cause direct or indirect effects on human health. This study assesses the severity of soil pollution and bioavailability of Cu and other metals (Ni, Zn, Co, Pb and Cr) in soils with various distances from a Ni refinery. We compare Cu concentrations in operationally defined soil fractions (bioavailable, bound to Fe/Mn oxide and incorporated in organic matter) with other metals (Ni, Zn, Pb, Co, Cr) usually occurring in ores used in metallurgic processes and report their pollution and geoaccumulation indices (PI and Igeo). Further, we use Cu stable isotope ratios (δ65Cu) to trace the fate and mobility of Cu in soils. Our data suggest a point source of contamination for some of the heavy metals including Ni (Igeo = 1.9), Zn (Igeo = 0.28) and Cu (Igeo = 3.6) near the Ni refinery. However, Co (Igeo = 0.15) and Pb (Igeo = 3.3) contaminations are likely to be linked to different sources. No elevated Cr levels (Igeo= -0.07) occur in any of the studied soils. All soil metals are predominantly associated with organic matter (>50%) which  reduces their bioavailibility and thus their risk for ecological and human health. The Cu isotope data show that Cu in soil organic matter is enriched in 65Cu, while the lighter isotopes (63Cu) remain in the dissolved bioavailable Cu fraction (Δ65Cuorganic-bioavailable is +0.12 ± 0.13‰). This suggests the preferential complexation of 65Cu with soil organic matter after dissolution of Cu deposited to the soil. Thus, Cu isotope data can effectively indicate pathways of metal migration in polluted soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adamo, P., Dudka, S., Wilson, M. J., & Mchardy, W. J. (2002). Distribution of trace elements in soils from the Sudbury smelting area (Ontario, Canada). Water, Air, and Soil pollution, 137, 96–116.

    Article  Google Scholar 

  2. Alban, J. R. (1984). Swansea, 1184–1984. Swansea: Swansea City Council and South Wales Evening Post.

    Google Scholar 

  3. Alloway, B. J. (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Berlin: Springer.

    Google Scholar 

  4. Artiola, J. F. (2005). Speciation of copper in the environment. In R. Cornelis, J. Caruso, H. Crews, & K. Heumann (Eds.), Handbook of elemental speciation II: Species in the environment, food, medicine and occupational health. Chichester, UK: John Wiley & Sons.

    Google Scholar 

  5. Babcsanyi, I., Chabaux, F., Granet, M., Meite, F., Payraudeau, S., Duplay, J., et al. (2016). Coper in soil fractions and runoff in a vineyard catchment: Insights from copper stables isotopes. Science of the Total Environment, 557, 154–162.

    Article  CAS  Google Scholar 

  6. Balistrieri, L. S., Borrok, D. M., Wanty, R. B., & Ridley, W. I. (2008). Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72, 311–328.

    CAS  Article  Google Scholar 

  7. Bigalke, M., Weyer, S., Kobza, J., & Wilcke, W. (2010a). Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochimica et Cosmochimica Acta, 74, 6801–6813.

    CAS  Article  Google Scholar 

  8. Bigalke, M., Weyer, S., & Wilcke, W. (2010b). Copper isotope fractionation during complexation with insolubilized humic acid. Environmental Science and Technology, 44, 5496–5502.

    CAS  Article  Google Scholar 

  9. Borůvka, L., & Drábek, O. (2004). Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant Soil and Environmen, 50, 339–345.

    Article  Google Scholar 

  10. Bowen, H. J. M. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  11. Christoffersen, P. (2017). Stable Cu, Fe, and Ni isotopic systematics of the Sudbury offset dikes and associated rocks. Thesis, University of Western Ontario.

  12. Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45–55.

    CAS  Article  Google Scholar 

  13. Davies, B. E. (1997). Heavy metal contaminated soils in an old industrial area of Wale, Great Britain: Source identification through statistical data interpretation. Water, Air Soil Pollution, 94, 85–98.

    CAS  Google Scholar 

  14. Davis, J. A. (1984). Complexation of trace metals by adsorbed natural organic matter. Geochimica et Cosmochimica Acta, 48, 679–691.

    CAS  Article  Google Scholar 

  15. Donisa, C., Mocanu, R., & Steinnes, E. (2003). Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. Geoderma, 111, 75–84.

    CAS  Article  Google Scholar 

  16. Entwistle, J. A., Hursthouse, A. S., Marinho Reis, P. A., & Stewart, A. G. (2019). Metalliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Current Pollution Reports, 5, 67–83.

    CAS  Article  Google Scholar 

  17. Ettler, V., Mihaljevic, M., Kribek, B., Majer, V., & Sebek, O. (2011). Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma, 164, 73–84.

    CAS  Article  Google Scholar 

  18. Fekiacova, Z., Cornu, S., & Pichat, S. (2015). Tracing contamination source in soils with Cu and Zn isotope ratios. Science of the Total Environment, 517, 96–105.

    CAS  Article  Google Scholar 

  19. Freedman, B., & Hutchinson, T. C. (1980). Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Canadian Journal of Botany, 58, 108–132.

    CAS  Article  Google Scholar 

  20. Gale, N. H., Woodhead, A. P., Stos-Gale, Z. A., Walder, A., & Bowen, I. (1999). Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry, 184, 1–9.

    CAS  Article  Google Scholar 

  21. Gonzalez-Alcaraz, N. M., & van Gestel, C. A. M. (2015). Climate change effects on enchtraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation. Environmental Research, 142, 177–184.

    CAS  Article  Google Scholar 

  22. Goodman, G. T., & Roberts, T. M. (1971). Plants and soils as indicators of metals in the air. Nature, 231, 287–292.

    CAS  Article  Google Scholar 

  23. Goodman, G. T., Smith, S., & Inskip, M. J. (1975). Moss bags as indicators of airborne metals—an evaluation. Welsh Office. Report of a collaborative study on certain elements in air, soil, plants, animals and humans in the Swansea/Neath/Port Talbot area, together with a report on a moss bag study of atmospheric pollution across South Wales, Welsh Office, Cardiff (pp. 267–332).

  24. Grobelak A, Kowalska A (2020) Heavy metal mobility in soil under futuristic climatic conditions. In: Climate Change and Soil Interactions. Elsevier, pp 437–451. https://doi.org/10.1016/B978-0-12-818032-7.00016-3.

  25. Gustafsson, J. P., Persson, I., Oromieh, A. G., van Schaik, J. W. J., Sjostedt, C., & Kleja, D. B. (2014). Chromium complexation to natural organic matter: Mechanisms and modeling. Environmental Science and Technology, 48, 1753–1761.

    CAS  Article  Google Scholar 

  26. Hawley, J. E. (1962). The Sudbury ores, their mineralogy and origin; Part1. The geological setting. Canad. Mineral, 7, 1–29.

    Google Scholar 

  27. Hayman, G. (2009). Atmospheric dispersion modelling of nickel in the Swansea area. Teddington: National Physics Laboratory, HMSO.

    Google Scholar 

  28. Hodson, M. E., & Donner, E. (2013). Managing adverse soil chemical environments. In P. J. Gregory & S. Nortcliff (Eds.), Soil Conditions and Plant Growth (eleventh ed., pp. 195–237). UK: John Wiley and Sons.

    Google Scholar 

  29. Hutchinson, T. C., & Whitby, L. M. (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I Soil and vegetation contamination by nickel, copper, and other metals. Environmental Conservation, 1, 123–132.

    Article  Google Scholar 

  30. Jarsjö, J., Andersson-Sköld, Y., Fröberg, M., Pietron, J., Borgström, R., Löv, A., et al. (2020). Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater levels. Science of the Total Environment, 712, 135560.

    Article  CAS  Google Scholar 

  31. Kaasalainen, M., & Yli-Halla, M. (2003). Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution, 126, 225–233.

    CAS  Article  Google Scholar 

  32. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). Boca Raton, FL: CRC Press, Taylor & Francis Group.

    Google Scholar 

  33. Kabata-Pendias, A., Bolibzuch, E., & Tarlowski, P. (1981). Impact of a copper smelter on agricultural environments Part I. Contamination of soils. Rocz Glebozn, 32, 207–214.

    CAS  Google Scholar 

  34. Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environmental Geochemistry and Health, 37, 1041–1061.

    CAS  Article  Google Scholar 

  35. Kribek, B., Sipkova, A., Ettler, V., Mihaljevic, M., Majer, V., Knesl, I., et al. (2018). Variability of the copper isotopic composition in soils and grass affected by mining and smelting in Tsumeb, Namibia. Chemical Geology, 493, 121–135.

    CAS  Article  Google Scholar 

  36. Kubova, J., Stresko, V., Bujdos, M., Matus, P., & Medved, J. (2004). Fractionation of various elements in CRMs and in polluted soils. Analytical and Bioanalytical Chemistry, 379, 108–114.

    CAS  Article  Google Scholar 

  37. Kusonwiriyawong, C., Bigalke, M., Abgottspon, F., Lazarov, M., & Wilcke, W. (2016). Response of Cu partitioning to flooding: A δ65Cu approach in a carbonatic alluvial soil. Chemical Geology, 420, 69–76.

    CAS  Article  Google Scholar 

  38. Lalas, S., Athanasiadis, V., & Dourtoglou, V. G. (2018). Humic and fulvic acids as potentially toxic metal reducing agents in water. Soil, Air, Water, 46, 1–6.

    Google Scholar 

  39. Larner, B. L., See, A. J., & Townsend, A. T. (2006). Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711. Analytica Chimica Acta, 556, 444–449.

    CAS  Article  Google Scholar 

  40. Marchant, B. P., Tye, A. M., & Rawlins, B. G. (2011). The assessment of point-source and diffuse soil metal pollution using robust geostatistical methods: a case study in Swansea (Wales, UK). European Journal of Soil Science, 62, 346–358.

    CAS  Article  Google Scholar 

  41. Mathur, R., Titley, S., Hart, G., Wilson, M., Davignon, M., & Zlatos, C. (2009). The history of the United States cent revealed through copper isotope fractionation. Journal of Archaeological Science, 36, 430–433.

    Article  Google Scholar 

  42. Mattielli, N., Rimetz, J., Petit, J., Perdrix, E., Deboudt, K., Flament, P., et al. (2006). Zn-Cu isotopic study and speciation of airborne metal particles within a 5-km zone of a lead/zinc smelter. Geochimica et Cosmochimica Acta, 70, A401.

    Article  Google Scholar 

  43. McGrath, S. P., & Loveland, P. J. (1992). The geochemical survey of topsoils in England and Wales. Trace Substance in Environmental Health, XXV, C39–C51.

    Google Scholar 

  44. Mihaljevic, M., Jarosikova, A., Ettler, V., Vanek, A., Penizek, V., Kribek, B., et al. (2018). Copper isotopic record in soils and tree rings near a copper smelter, Copperbelt, Namibia. Science of the Total Environment, 621, 9–17.

    CAS  Article  Google Scholar 

  45. Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  46. Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311, 205–219.

    CAS  Article  Google Scholar 

  47. Nierop, K. G. J., Jansen, B., Vrugt, J. A., & Verstraten, J. M. (2002). Copper complexation by dissolved organic matter and uncertainty assessment of their stability constant. Chemosphere, 49, 1191–1200.

    CAS  Article  Google Scholar 

  48. Pandey, A. K., Pandey, S. D., & Misri, V. (2000). Stability constant of metal-humic acid complexes and its role in environmental detoxification. Ecotoxicology and Environmental Safety, 47, 195–200.

    CAS  Article  Google Scholar 

  49. Perkins, W. T. (2011). Extreme selenium and tellurium contamination in soils—an eighty years-old industrial legacy surrounding a Ni refinery in the Swansea Valley. Science of the Total Environment, 412, 162–169.

    Article  CAS  Google Scholar 

  50. Pokrovsky, O. S., Viers, J., Emnova, E. E., Kompanrseva, E. I., & Freydier, R. (2008). Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control. Geochimica et Cosmochimica Acta, 72, 1742–1757.

    CAS  Article  Google Scholar 

  51. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    CAS  Article  Google Scholar 

  52. Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailibility in soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10, 61–75.

    CAS  Article  Google Scholar 

  53. Roebbert, Y., Rabe, K., Lazarove, M., Schuth, S., Schippers, A., Dold, B., et al. (2018). Fractionation of Fe and Cu isotopes in acid mine tailings: Modification and application of a sequential extraction method. Chemical Geology, 493, 67–79.

    CAS  Article  Google Scholar 

  54. Ryan, B. M., Kirby, J. K., Degryse, F., Scheiderich, K., & McLaughlin, M. J. (2014). Copper isotope fractionation during equilibration with natural and synthetic ligands. Environmental Science and Technology, 48, 8620–8626.

    CAS  Article  Google Scholar 

  55. Smith, I. C., & Carson, B. L. (1981). Trace Metals in the Environment. Ann Arbor, MI: Ann Arbor Science Publishers.

    Google Scholar 

  56. Sutherland, R. A., & Tack, F. M. G. (2002). Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure. Analytica Chimica Acta, 454, 249–257.

    CAS  Article  Google Scholar 

  57. Temple, P. J., & Bisessar, S. (1981). Uptake and toxicity of nickel and other metals in crops grown on soil contaminated by a nickel refinery. Journal of Plant Nutrition, 3, 473–482.

    CAS  Article  Google Scholar 

  58. Tessier, A. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    CAS  Article  Google Scholar 

  59. Thapalia, A., Borrok, D. M., Van Metre, P. C., Musgrove, M. L., & Landa, E. R. (2010). Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake. Environmental Science and Technology, 44, 1544–1550.

    CAS  Article  Google Scholar 

  60. UK Soil and Herbage Pollutant Survey (UKSHS) report no. 1. Introduction and summary. Environment Agency, Bristol.

  61. van Liedekerke, M., Prokop, G., Rabl-Berger, S., Kibblewhite, M., & Louwagie, G. (2014). Progress in the management of contaminated sites in Europe, European Commission EUR 26376, EUR—Scientific and Technical Research Series, Publications Office of the European Union, Luxembourg

  62. Vance, D., Archer, C., Bermin, J., Perkins, J., Statham, P. J., Lohan, M., et al. (2008). The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274, 204–213.

    CAS  Article  Google Scholar 

  63. Weinstein, C., Moynier, F., Wang, K., Paniello, R., Foriel, J., Catalano, J., et al. (2011). Isotopic fractionation of Cu in plants. Chemical Geology, 286, 266–271.

    CAS  Google Scholar 

  64. Wittbrodt, P. R., & Palmer, C. D. (1996). Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environmental Science and Technology, 30, 2470–2477.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the Department of Earth Sciences, Oxford University. We thank Phil Holdship for assisting with the ICP-MS analysis. We also thank two anonymous reviewers for their constructive feedback.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathrin Schilling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schilling, K., Basu, A., Kaplan, A. et al. Metal distribution, bioavailability and isotope variations in polluted soils from Lower Swansea Valley, UK. Environ Geochem Health (2021). https://doi.org/10.1007/s10653-020-00794-x

Download citation

Keywords

  • Heavy metals
  • Soil
  • Spatial distribution
  • Bioavailability
  • Copper isotopes
  • Pollution