Urinary cadmium concentrations and risk of primary ovarian insufficiency in women: a case–control study

Abstract

Cadmium, a toxic heavy metal that occurs in the environment in large quantities through human activities, has been shown to have adverse effects on female reproductive health. However, the association between cadmium exposure and primary ovarian insufficiency (POI), one of the most prevalent ovarian diseases in women, has not been examined yet. This case–control study involving 169 POI cases and 209 healthy controls was conducted in Zhejiang Province, China. The urinary concentrations of cadmium were determined by inductively coupled plasma mass spectrometry (ICP-MS). In addition, serum levels of reproductive hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Mullerian hormone (AMH) and estradiol, were measured. The median concentration of urinary cadmium in POI cases (0.43 μg/L, 0.58 μg/g for creatinine adjustment) was significantly higher than that of controls (0.29 μg/L, 0.43 μg/g for creatinine adjustment). The results of binary logistic regression models showed that the concentrations of urinary cadmium were positively significantly correlated with the odds ratio (ORs) of POI before the adjustment of confounders. After the adjustment, a significantly positive association was still present between the increased concentrations of cadmium and the ORs of POI (2.50, 95% CIs: 1.34–4.65 for the third tertile, p for trend = 0.001). The serum levels of FSH and LH were positively associated with urinary cadmium, while AMH and estradiol levels were inversely correlated. To the best of our knowledge, this is the first reported positive association of cadmium exposure with the risk of POI in women.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abdel Aziz, R. L., Khalil, A. A. Y., Abdel-Wahab, A., Hassan, N. Y., Abdel-Hamied, E., & Kasimanickam, R. K. (2017). Relationship among circulating anti-Mullerian hormone, insulin like growth factor 1, cadmium and superovulatory response in dairy cows. Theriogenology, 100, 72–79. https://doi.org/10.1016/j.theriogenology.2017.06.007.

    CAS  Article  Google Scholar 

  2. Akerstrom, M., Barregard, L., Lundh, T., & Sallsten, G. (2013). The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicology and Applied Pharmacology, 268(3), 286–293. https://doi.org/10.1016/j.taap.2013.02.009.

    CAS  Article  Google Scholar 

  3. Bekheet, S. H. (2011). Comparative effects of repeated administration of cadmium chloride during pregnancy and lactation and selenium protection against cadmium toxicity on some organs in immature rats’ offsprings. Biological Trace Element Research, 144(1–3), 1008–1023. https://doi.org/10.1007/s12011-011-9084-z.

    CAS  Article  Google Scholar 

  4. Beranger, R., Hoffmann, P., Christin-Maitre, S., & Bonneterre, V. (2012). Occupational exposures to chemicals as a possible etiology in premature ovarian failure: a critical analysis of the literature. Reproductive Toxicology, 33(3), 269–279. https://doi.org/10.1016/j.reprotox.2012.01.002.

    CAS  Article  Google Scholar 

  5. Butts, S. F., & Practice, C. G. (2017). Hormone therapy in primary ovarian insufficiency. Obstet Gynecology, 129(5), E134–E141. https://doi.org/10.1097/AOG.0000000000002044.

    Article  Google Scholar 

  6. Cao, M., Pan, W., Shen, X., Li, C., Zhou, J., & Liu, J. (2019). Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones. Chemosphere, 242, 125206. https://doi.org/10.1016/j.chemosphere.2019.125206.

    CAS  Article  Google Scholar 

  7. CDC (2019). Fourth National Report on Human Exposure to Environmental Chemicals Updated Tables, January 2019, Volume 1.

  8. Chen, X., Wang, Z., Zhu, G., Nordberg, G. F., Jin, T., & Ding, X. (2019). The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. Journal of Exposure Science & Environmental Epidemiology, 29(3), 435–443. https://doi.org/10.1038/s41370-018-0057-6.

    CAS  Article  Google Scholar 

  9. Chen, Y., Xu, X., Zeng, Z., Lin, X., Qin, Q., & Huo, X. (2019). Blood lead and cadmium levels associated with hematological and hepatic functions in patients from an e-waste-polluted area. Chemosphere, 220, 531–538. https://doi.org/10.1016/j.chemosphere.2018.12.129.

    CAS  Article  Google Scholar 

  10. Christ, J. P., Gunning, M. N., Palla, G., Eijkemans, M. J. C., Lambalk, C. B., Laven, J. S. E., et al. (2018). Estrogen deprivation and cardiovascular disease risk in primary ovarian insufficiency. Fertility & Sterility, 109(4), 594–600e591, https://doi.org/10.1016/j.fertnstert.2017.11.035.

    CAS  Article  Google Scholar 

  11. Committee on Gynecologic Practice (2015). Committee Opinion No. 618 Ovarian Reserve Testing. Obstetrics & Gynecology, 125(1). https://doi.org/10.1097/01.AOG.0000459864.68372.ec.

  12. Cui, X., Cheng, H., Liu, X., Giubilato, E., Critto, A., Sun, H., et al. (2018). Cadmium exposure and early renal effects in the children and adults living in a tungsten-molybdenum mining areas of South China. Environmental Science & Pollution Research International, 25(15), 15089–15101. https://doi.org/10.1007/s11356-018-1631-0.

    CAS  Article  Google Scholar 

  13. Dailiah Roopha, P., & Padmalatha, C. (2012). Effect of herbal preparation on heavy metal (cadmium) induced antioxidant system in female Wistar rats. Journal of Medical Toxicology, 8(2), 101–107. https://doi.org/10.1007/s13181-011-0194-y.

    CAS  Article  Google Scholar 

  14. Davis, M., Ventura, J. L., Wieners, M., Covington, S. N., Vanderhoof, V. H., Ryan, M. E., et al. (2010). The psychosocial transition associated with spontaneous 46, XX primary ovarian insufficiency: illness uncertainty, stigma, goal flexibility, and purpose in life as factors in emotional health. Fertility & Sterility, 93(7), 2321–2329. https://doi.org/10.1016/j.fertnstert.2008.12.122.

    Article  Google Scholar 

  15. De Vos, M., Devroey, P., & Fauser, B. C. J. M. (2010). Primary ovarian insufficiency. The Lancet, 376(9744), 911–921. https://doi.org/10.1016/s0140-6736(10)60355-8.

    Article  Google Scholar 

  16. Faroon, O., Ashizawa, A., Wright, S., Tucker, P., Jenkins, K., Ingerman, L., et al. (2012). In Toxicological Profile for Cadmium (Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles). Atlanta (GA).

  17. Gallagher, C. M., Moonga, B. S., & Kovach, J. S. (2010). Cadmium, follicle-stimulating hormone, and effects on bone in women age 42–60 years, NHANES III. Environmental Research, 110(1), 105–111. https://doi.org/10.1016/j.envres.2009.09.012.

    CAS  Article  Google Scholar 

  18. Haines, D. A., Saravanabhavan, G., Werry, K., & Khoury, C. (2017). An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. International Journal of Hygiene and Environmental Health, 220(2 Pt A), 13–28. https://doi.org/10.1016/j.ijheh.2016.08.002.

    CAS  Article  Google Scholar 

  19. Hu, X., Chandler, J. D., Park, S., Liu, K., Fernandes, J., Orr, M., et al. (2019). Low-dose cadmium disrupts mitochondrial citric acid cycle and lipid metabolism in mouse lung. Free Radical Biology and Medicine, 131, 209–217. https://doi.org/10.1016/j.freeradbiomed.2018.12.005.

    CAS  Article  Google Scholar 

  20. Huang, S., Kuang, J., Zhou, F., Jia, Q., Lu, Q., Feng, C., et al. (2019). The association between prenatal cadmium exposure and birth weight: a systematic review and meta-analysis of available evidence. Environmental Pollution, 251, 699–707. https://doi.org/10.1016/j.envpol.2019.05.039.

    CAS  Article  Google Scholar 

  21. IARC. (2012). Arsenic, metals, fibres, and dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100(Pt C), 11–465.

    Google Scholar 

  22. Ikeda, M., Moriguchi, J., Sakuragi, S., & Ohashi, F. (2013). Relation of child birth and breast-feeding burden with cadmium and tubular dysfunction marker levels in urine of adult women in non-polluted areas in Japan. International Archives of Occupational and Environmental Health, 86(6), 689–698. https://doi.org/10.1007/s00420-012-0800-6.

    CAS  Article  Google Scholar 

  23. Knox, S. S., Jackson, T., Javins, B., Frisbee, S. J., Shankar, A., & Ducatman, A. M. (2011). Implications of early menopause in women exposed to perfluorocarbons. The Journal of Clinical Endocrinology and Metabolism, 96(6), 1747–1753. https://doi.org/10.1210/jc.2010-2401.

    CAS  Article  Google Scholar 

  24. Lee, Y. M., Chung, H. W., Jeong, K., Sung, Y. A., Lee, H., Ye, S., et al. (2018). Association between cadmium and anti-Mullerian hormone in premenopausal women at particular ages. Annals of Occupational and Environmental Medicine, 30, 44. https://doi.org/10.1186/s40557-018-0255-7.

    Article  Google Scholar 

  25. Li, C. M., Cao, M. F., Ma, L. J., Ye, X. Q., Song, Y., Pan, W. Y., et al. (2018). Pyrethroid pesticide exposure and risk of primary ovarian insufficiency in Chinese women. Environmental Science & Technology, 52(5), 3240–3248. https://doi.org/10.1021/acs.est.7b06689.

    CAS  Article  Google Scholar 

  26. Lim, S., & Yoon, J. H. (2019). Exposure to environmental pollutants and a marker of early kidney injury in the general population: Results of a nationally representative cross-sectional study based on the Korean National Environmental Health Survey (KoNEHS) 2012–2014. Science of the Total Environment, 681, 175–182. https://doi.org/10.1016/j.scitotenv.2019.04.081.

    CAS  Article  Google Scholar 

  27. Llanos, M. N., & Ronco, A. M. (2009). Fetal growth restriction is related to placental levels of cadmium, lead and arsenic but not with antioxidant activities. Reproductive Toxicology, 27(1), 88–92. https://doi.org/10.1016/j.reprotox.2008.11.057.

    CAS  Article  Google Scholar 

  28. Nagata, C., Konishi, K., Goto, Y., Tamura, T., Wada, K., Hayashi, M., et al. (2016). Associations of urinary cadmium with circulating sex hormone levels in pre- and postmenopausal Japanese women. Environmental Research, 150, 82–87. https://doi.org/10.1016/j.envres.2016.05.031.

    CAS  Article  Google Scholar 

  29. Nelson, L. M. (2009). Clinical practice. Primary ovarian insufficiency. The New England Journal of Medicine 360(6), 606–614. https://doi.org/10.1056/NEJMcp0808697.

    CAS  Article  Google Scholar 

  30. Nisse, C., Tagne-Fotso, R., Howsam, M., Members of Health Examination Centres of the Nord - Pas-de-Calais region, n., Richeval, C., Labat, L., et al. (2017). Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008–2010. International Journal of Hygiene and Environmental Health, 220(2 Pt B), 341–363. https://doi.org/10.1016/j.ijheh.2016.09.020.

  31. Nna, V. U., Usman, U. Z., Ofutet, E. O., & Owu, D. U. (2017). Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride—induced oxidative stress in the uterus and ovaries of female Wistar rats. Food and Chemical Toxicology, 102, 143–155. https://doi.org/10.1016/j.fct.2017.02.010.

    CAS  Article  Google Scholar 

  32. Pan, W. Y., Ye, X. Q., Yin, S. S., Ma, X. C., Li, C. M., Zhou, J. H., et al. (2019). Selected persistent organic pollutants associated with the risk of primary ovarian insufficiency in women. Environment International, 129, 51–58. https://doi.org/10.1016/j.envint.2019.05.023.

    CAS  Article  Google Scholar 

  33. Pan, W. Y., Ye, X. Q., Zhu, Z. Y., Li, C. M., Zhou, J. H., & Liu, J. (2020). A case-control study of arsenic exposure with the risk of primary ovarian insufficiency in women. Environmental Science and Pollution Research, 27(20), 25220–25229.

    CAS  Article  Google Scholar 

  34. Saad, A. A., Gaber, K., Youssef, A. I., Amer, N. M., Ashour, M. N., Farag, M. K., et al. (2011). The role of cadmium as a causative agent of recurrent abortion in Egyptian women. Human and Ecological Risk Assessment: An International Journal, 17(4), 906–914. https://doi.org/10.1080/10807039.2011.588154.

    CAS  Article  Google Scholar 

  35. Tao, X. Y., Zuo, A. Z., Wang, J. Q., & Tao, F. B. (2016). Effect of primary ovarian insufficiency and early natural menopause on mortality: a meta-analysis. Climacteric, 19(1), 27–36. https://doi.org/10.3109/13697137.2015.1094784.

    Article  Google Scholar 

  36. Thompson, J., & Bannigan, J. (2008). Cadmium: toxic effects on the reproductive system and the embryo. Reproductive Toxicology, 25(3), 304–315. https://doi.org/10.1016/j.reprotox.2008.02.001.

    CAS  Article  Google Scholar 

  37. Tyrrell, J., Melzer, D., Henley, W., Galloway, T. S., & Osborne, N. J. (2013). Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001–2010. Environment International, 59, 328–335. https://doi.org/10.1016/j.envint.2013.06.017.

    CAS  Article  Google Scholar 

  38. Vabre, P., Gatimel, N., Moreau, J., Gayrard, V., Picard-Hagen, N., Parinaud, J., et al. (2017). Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environmental Health, 16(1), 37. https://doi.org/10.1186/s12940-017-0242-4.

    CAS  Article  Google Scholar 

  39. Wan, N., Xu, Z., Liu, T., Min, Y., & Li, S. (2018). Ameliorative effects of selenium on cadmium-induced injury in the chicken ovary: mechanisms of oxidative stress and endoplasmic reticulum stress in cadmium-induced apoptosis. Biological Trace Element Research, 184(2), 463–473. https://doi.org/10.1007/s12011-017-1193-x.

    CAS  Article  Google Scholar 

  40. Wan, X., Zhu, J., Zhu, Y., Zhu, Y., Ma, X., Zheng, Y., et al. (2010). Rat ovarian follicle bioassay reveals adverse effects of cadmium chloride (CdCl2) exposure on follicle development and oocyte maturation. Toxicology & Industrial Health, 26(9), 609–618. https://doi.org/10.1177/0748233710375949.

    CAS  Article  Google Scholar 

  41. Wang, X., & Tian, J. (2004). Health risks related to residential exposure to cadmium in Zhenhe County, China. Archives of Environmental Health, 59(6), 324–330. https://doi.org/10.3200/AEOH.59.6.324-330.

    CAS  Article  Google Scholar 

  42. Wang, Y., Wang, X., Wang, Y., Fan, R., Qiu, C., Zhong, S., et al. (2015). Effect of cadmium on cellular ultrastructure in mouse ovary. Ultrastructural Pathology, 39(5), 324–328. https://doi.org/10.3109/01913123.2015.1027436.

    Article  Google Scholar 

  43. Webber, L., Davies, M., Anderson, R., Bartlett, J., Braat, D., Cartwright, B., et al. (2016). ESHRE guideline: Management of women with premature ovarian insufficiency. Human Reproduction, 31(5), 926–937. https://doi.org/10.1093/humrep/dew027.

    CAS  Article  Google Scholar 

  44. Weng, S., Wang, W., Li, Y., Li, H., Lu, X., Xiao, S., et al. (2014). Continuous cadmium exposure from weaning to maturity induces downregulation of ovarian follicle development-related SCF/c-kit gene expression and the corresponding changes of DNA methylation/microRNA pattern. Toxicology Letters, 225(3), 367–377. https://doi.org/10.1016/j.toxlet.2014.01.012.

    CAS  Article  Google Scholar 

  45. WHO (2008). Cadmium. In Guidelines for drinking-water quality, 3rd edition incorporating 1st and 2nd addenda, vol. 1. Recommendations (pp. 317–318).

  46. Yang, J., Huo, W., Zhang, B., Zheng, T., Li, Y., Pan, X., et al. (2016). Maternal urinary cadmium concentrations in relation to preterm birth in the Healthy Baby Cohort Study in China. Environment International, 94, 300–306. https://doi.org/10.1016/j.envint.2016.06.003.

    CAS  Article  Google Scholar 

  47. Yatsenko, S. A., & Rajkovic, A. (2019). Genetics of human female infertilitydagger. Biology of Reproduction, 101(3), 549–566. https://doi.org/10.1093/biolre/ioz084.

    Article  Google Scholar 

  48. Ye, X. Q., & Liu, J. (2019). Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. Environmental Pollution, 245, 590–599. https://doi.org/10.1016/j.envpol.2018.11.031.

    CAS  Article  Google Scholar 

  49. Ye, X. Q., Pan, W. Y., Li, C. M., Ma, X. C., Yin, S. S., Zhou, J. H., et al. (2020). Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance. Journal of Environmental Sciences, 91, 1–9. https://doi.org/10.1016/j.jes.2019.12.015.

    Article  Google Scholar 

  50. Yunus, F. M., Rahman, M. J., Alam, M. Z., Hore, S. K., & Rahman, M. (2014). Relationship between arsenic skin lesions and the age of natural menopause. BMC Public Health, 14,. https://doi.org/10.1186/1471-2458-14-419.

  51. Zhang, W., Pang, F., Huang, Y., Yan, P., & Lin, W. (2008). Cadmium exerts toxic effects on ovarian steroid hormone release in rats. Toxicology Letters, 182(1–3), 18–23. https://doi.org/10.1016/j.toxlet.2008.07.016.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2019FZJD007 and 2019QNA6008), Natural Science Foundation of Zhejiang Province (LZ21B070001), National Natural Science Foundation of China (21876151, 22076166 and 81703236), Program for Key Subjects of Zhejiang Province in Medicine & Hygiene and Project for Zhejiang Medical Technology Program (2018KY437 and WKJ-ZJ-1621).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Ye, X., Zhu, Z. et al. Urinary cadmium concentrations and risk of primary ovarian insufficiency in women: a case–control study. Environ Geochem Health (2020). https://doi.org/10.1007/s10653-020-00775-0

Download citation

Keywords

  • Cadmium
  • Heavy metal
  • Primary ovarian insufficiency
  • Reproductive hormones
  • Female reproductive health