Abstract
In this study, two amendments, poultry waste and ammonium nitrate, were evaluated to condition and stabilize a mine tailing and thus help the vegetation cover settle. Individually, ammonium nitrate was tested as a nitrogen source and chicken bone ash as a phosphate source. For this, laboratory tests were made on soil columns from the area to be remediated. The mobility and availability of metals and nutrients were determined by analyzing their leachates chemically. The results showed that the use of chicken bone ash decreases soluble metal concentrations, particularly in Fe and soluble Mn. On the other hand, experimental conditions proved that the acidification produced by ammonium nitrate nitrification does not significantly increase the lechate metal content. Therefore, its use for fertilization does not involve phytotoxicity risks. Regarding the availability of macronutrients as well as trace elements, the results showed that the concentrations lie within the ranges suitable for plant nutrition. So, the treatments are effective both for fertilization and phytoremediation.
Graphic abstract






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abbaspour, A., Kalbasi, M., Hajrasuliha, S., & Fotovat, A. (2008). Effect of organic matter and salinity on ethylenediaminetetraacetic acid-extractable and solution species of cadmium and lead in three agricultural soils. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103620801925380
Acosta, J. A., Abbaspour, A., Martínez, G. R., Martínez-Martínez, S., Zornoza, R., Gabarrón, M., & Faz, A. (2018). Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere, 204, 71–78. https://doi.org/10.1016/j.chemosphere.2018.04.027
Adiansyah, J. S., Rosano, M., Vink, S., & Keir, G. (2015). A framework for a sustainable approach to mine tailings management: Disposal strategies. Journal of Cleaner Production, 108, 1–13. https://doi.org/10.1016/j.jclepro.2015.07.139
Ahmad, M., Hashimoto, Y., Moon, D. H., Lee, S. S., & Ok, Y. S. (2012). Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2012.01.047
Ahmad, M., Moon, D. H., Lim, K. J., Shope, C. L., Lee, S. S., Usman, A. R. A., et al. (2012). An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1550-1
Ahmad, M., Soo Lee, S., Yang, J. E., Ro, H. M., Han Lee, Y., & Sik Ok, Y. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2012.01.003
Anawar, H. M., Freitas, M. C., Canha, N., & Regina, I. S. (2011). Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-011-9378-2
Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., et al. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Science Reviews. https://doi.org/10.1016/j.earscirev.2017.06.005
Ashworth, D. J., & Alloway, B. J. (2007). Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behaviour and plant uptake. Water Air and Soil Pollution. https://doi.org/10.1007/s11270-006-9331-7
Barbosa, B., & Fernando, A. L. (2018). Aided Phytostabilization of mine waste. In Bio-geotechnologies for mine site rehabilitation (pp. 147-157). Elsevier. https://doi.org/10.1016/B978-0-12-812986-9.00009-9.
Basta, N. T., & Tabatabai, M. A. (1985). Determination of exchangeable bases in soils by ion chromatography1. Soil Science Society of America Journal, 49(1), 84. https://doi.org/10.2136/sssaj1985.03615995004900010017x
Bingham, F. T. (1965). Methods of soil analysis. part 2. chemical and microbiological properties. Doi: https://doi.org/10.2134/agronmonogr9.2.2ed.
Bingham, F. T. (1982). Boron. In A. S. of Agronomy (Ed.), Methods in Soil Analysis, Part 2: Chemical and microbial properties (2nd edn., pp. 431–448).
Blakemore, L. C. (1972). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report, 10, A11–A21.
Blakemore, L., Searle, P., & Daly, B. (1981). Methods for chemical analysis of soils. New Zealnd Soil Bureau Scientific Report 10A. Dsir.
Bloise, A., Barca, D., Gualtieri, A. F., Pollastri, S., & Belluso, E. (2016). Trace elements in hazardous mineral fibres. Environmental Pollution, 216, 314–323. https://doi.org/10.1016/j.envpol.2016.06.007
Bloise, A., Punturo, R., Catalano, M., Miriello, D., & Cirrincione, R. (2016). Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Italian Journal of Geosciences, 135(2), 268–279. https://doi.org/10.3301/IJG.2015.24
Briggs, P. H. (1996). Forty elements by inductively coupled plasma-atomic emission spectrometry. In Analytical methods manual for the mineral resource surveys program, US geological survey: US geological survey (pp. 77–94). Arbogast BF.
Brown, J. R. (1988). Recommended chemical soil test procedures for the North Central Region. Columbia: North Central Regional Research Publication.
Choppala, G., Kunhikrishnan, A., Seshadri, B., Park, J. H., Bush, R., & Bolan, N. (2018). Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 184, 255–260. https://doi.org/10.1016/j.gexplo.2016.07.012
Chu, Z., Wang, X., Wang, Y., Zha, F., Dong, Z., Fan, T., & Xu, X. (2020). Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings. Environmental Earth Sciences, 79(3), 68. https://doi.org/10.1007/s12665-020-8807-x
Clemente, R., Dickinson, N. M., & Lepp, N. W. (2008). Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution. https://doi.org/10.1016/j.envpol.2007.11.024
Dahlquist, R. L., & Knoll, J. W. (1978). Inductively coupled plasma-atomic emission spectrometry: Analysis of biological materials and soils for major, trace, and ultra-trace elements. Applied Spectroscopy, 32(1), 1–30. https://doi.org/10.1366/000370278774331828
de Souza, F. G., Pereira, J., da Silva Mendes, J., & August, L. (2016). Evaluation of methods for SO. Journal of Current Research, 8(09), 37696–37699.
Esquenazi, E. L., Norambuena, B. K., Bacigalupo, Í. M., & Estay, M. G. (2018). Evaluation of soil intervention values in mine tailings in northern Chile. PeerJ, 6, e5879. https://doi.org/10.7717/peerj.5879
FAO. (2019). Food and agriculture organization of the United Nations. https://www.fao.org/ag/aga/agap/frg/afris/default.htm. Accessed 1 Aug 2019.
Fassel, V. A., & Kniseley, R. N. (1974). Inductively coupled plasma-optical emission spectroscopy. Analytical Chemistry. https://doi.org/10.1021/ac60349a722
Fellet, G., Marchiol, L., Perosa, D., & Zerbi, G. (2007). The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2007.06.011
Finck, A. (1982). Fertilizers and fertilization: introduction and practical guide to crop fertilization. Berlin: Verlag Chemie.
Guntzer, F., Keller, C., & Meunier, J. D. (2012). Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32(1), 201–213. https://doi.org/10.1007/s13593-011-0039-8
Hartley, W., Edwards, R., & Lepp, N. W. (2004). Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environmental Pollution. https://doi.org/10.1016/j.envpol.2004.02.017
Hashimoto, Y., Matsufuru, H., & Sato, T. (2008). Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere. https://doi.org/10.1016/j.chemosphere.2008.07.033
Hirzel, J. (2010). Uso de enmiendas orgánicas en frutales de hoja caduca: consideraciones técnicas y dosificaciones. Copefrut, 2, 42–48.
Hoffmann, V. H., McRae, G. J., & Hungerbühler, K. (2004). Methodology for early-stage technology assessment and decision making under uncertainty: application to the selection of chemical processes. Industrial and Engineering Chemistry Research, 43(15), 4337–4349. https://doi.org/10.1021/ie030243a
Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., & Huang, L. (2017). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-016-9873-6
Johnson, B. W., & Goldblatt, C. (2017). A secular increase in continental crust nitrogen during the Precambrian. arXiv preprint arXiv:1709.02412. https://doi.org/10.7185/geochemlet.1731.
Kabas, S., Faz, A., Acosta, J. A., Arocena, J. M., Zornoza, R., Martínez-Martínez, S., & Carmona, D. M. (2014). Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-013-9517-z
Koo, N., Lee, S. H., & Kim, J. G. (2012). Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-011-9419-x
Lam, E. J., Gálvez, M. E., Cánovas, M., Montofré, I. L., Rivero, D., & Faz, A. (2016). Evaluation of metal mobility from copper mine tailings in northern Chile. Environmental Science and Pollution Research, 23(12), 11901–11915. https://doi.org/10.1007/s11356-016-6405-y
Lam, E. J., Cánovas, M., Gálvez, M. E., Montofré, Í. L., Keith, B. F., & Faz, Á. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration, 182, 210–217. https://doi.org/10.1016/j.gexplo.2017.06.015
Lam, E. J., Gálvez, M. E., Cánovas, M., Montofré, Í. L., & Keith, B. F. (2018). Assessment of the adaptive capacity of plant species in copper mine tailings in arid and semiarid environments. Journal of Soils and Sediments, 18(6), 2203–2216. https://doi.org/10.1007/s11368-017-1835-9
Lam Esquenazi, E. J., Keith Norambuena, B. F., Montofre Bacigalupo, Í. L., & Gálvez Estay, M. E. (2019). Necessity of intervention policies for tailings identified in the Antofagasta Region Chile. Revista Internacional de Contaminación Ambiental, 35(3), 515–539. https://doi.org/10.20937/rica.2019.35.03.01
Lam, E. J., Montofré, I. L., Álvarez, F. A., Gaete, N. F., Poblete, D. A., & Rojas, R. J. (2020). Methodology to prioritize chilean tailings selection, according to their potential risks. International Journal of Environmental Research and Public Health, 17(11), 3948. https://doi.org/10.3390/ijerph17113948
Li, X., & Huang, L. (2015). Toward a new paradigm for tailings phytostabilization—nature of the substrates, amendment options, and anthropogenic pedogenesis. Critical Reviews in Environmental Science and Technology, 45(8), 813–839. https://doi.org/10.1080/10643389.2014.921977
Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W. T., Oh, S. E., et al. (2013). Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1929-z
Lindsay, W. L., & Norvell, W. A. (1978). a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Marchiol, L., Fellet, G., Perosa, D., & Zerbi, G. (2007). Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: A field experience. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2007.03.018
Nieto, K. F., & Frankenberger, W. T. (1985a). Single Column Ion Chromatography: I. Analysis of Inorganic Anions in Soils1. Soil Science Society of America Journal, 49(3), 587. https://doi.org/10.2136/sssaj1985.03615995004900030011x
Nieto, K. F., & Frankenberger, W. T. (1985b). Single column ion chromatography: II. analysis of ammonium, alkali metals, and alkaline earth cations in soils1. Soil Science Society of America Journal, 49(3), 592. https://doi.org/10.2136/sssaj1985.03615995004900030012x
Noirant, G., Benzaazoua, M., Kongolo, M., Bussière, B., & Frenette, K. (2019). Alternatives to xanthate collectors for the desulphurization of ores and tailings: Pyrite surface chemistry. Colloids and Surfaces A Physicochemical and Engineering Aspects, 577, 333–346. https://doi.org/10.1016/j.colsurfa.2019.05.086
Ok, Y. S., Lee, S. S., Jeon, W. T., Oh, S. E., Usman, A. R. A., & Moon, D. H. (2011). Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-010-9362-2
Ok, Y. S., Oh, S. E., Ahmad, M., Hyun, S., Kim, K. R., Moon, D. H., et al. (2010). Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences. https://doi.org/10.1007/s12665-010-0674-4
Pugnaloni, A., Giantomassi, F., Lucarini, G., Capella, S., Bloise, A., Di Primio, R., & Belluso, E. (2013). Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: an in vitro pilot study. Acta Histochemica, 115(2), 100–112. https://doi.org/10.1016/j.acthis.2012.04.004
Rhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1989.03615995005300020067x
Rojas, L., Larrain, P., Riveros, F., Sierra, C., Chiang, A., Martínez, L., & Alcaino, E. (2010). Producción integrada de hortalizas en la Región de Coquimbo (Boletín IN.). Instituto de Investigaciones Agropecuarias, Centro Regional de Investigaciones Intihuasi.
Roongtanakiat, N., Osotsapar, Y., & Yindiram, C. (2008). Effects of soil amendment on growth and heavy metals content in vetiver grown on iron ore tailings. Kasetsart Journal Natural Science, 42, 397–406.
Sadzawka, A., Carrasco, M., Demanet, R., Flores, H., Grez, R., Mora, M., et al. (2007). Métodos de análisis de lodos y suelos. Comisión de Normalización y Acreditación CNA de la SOciedad Chilena de la Ciencia del Suelo.
Sainju, U. M. (2017). Determination of nitrogen balance in agroecosystems. MethodsX, 4, 199–208. https://doi.org/10.1016/j.mex.2017.06.001
Salter, R. (2000). Trastornos y lesiones del sistema musculoesquelético. Introducción a la ortopedia, fracturas y lesiones articulares, reumatología, osteopatía metabólica y rehabilitación (3°). Barcelona, España: Masson, S.A.
Santos, E. S., Abreu, M. M., & Macías, F. (2019). Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.02.172
Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D., & Bharagava, R. N. (2019). Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. In Reviews of environmental contamination and toxicology (Vol 249, pp. 71–131). Cham: Springer.
Schippers, A., Jozsa, P. G., Sand, W., Kovacs, Z. M., & Jelea, M. (2000). Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiology Journal. https://doi.org/10.1080/01490450050023827
Schroeder, K., Rufaut, C. G., Smith, C., Mains, D., & Craw, D. (2005). Rapid plant-cover establishment on gold mine tailings in southern New Zealand: Glasshouse screening trials. International Journal of Phytoremediation. https://doi.org/10.1080/16226510500327178
Sobek, A. A. (1978). Field and laboratory methods applicable to overburdens and minesoils. Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
Studdert, G. A., & Echeverria, H. E. (2000). Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal, 64(4), 1496–1503. https://doi.org/10.2136/sssaj2000.6441496x
Tan, K. H. (1995). Soil sampling, preparation, and analysis. New York: Marcel Dekker Inc.
Touceda-González, M., Álvarez-López, V., Prieto-Fernández, Á., Rodríguez-Garrido, B., Trasar-Cepeda, C., Mench, M., & Kidd, P. S. (2017). Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. Journal of environmental management, 186, 301–313. https://doi.org/10.1016/j.jenvman.2016.09.019
Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025
Watson, M. E. (1998). Boron: Reconmended chemical soil test procedures for the North Central Region.
Westerman, R. L. (1990). Soil testing and plant analysis. In Soil science of America book series (3rd ed.).
Ye, L. L., Chen, Y. S., Chen, Y. D., Qian, L. W., Xiong, W. L., Xu, J. H., & Jiang, J. P. (2020). Phytomanagement of a chromium-contaminated soil by a high-value plant: Phytostabilization of heavy metal contaminated sites. BioResources, 15(2), 3545–3565.
Acknowledgements
This study is part of CORFO-INNOVA Project 08CM01-05 “Integrated development of magneto-chemical technologies and phytotechnologies applied to the remediation of heavy metals in mining environmental liability development.” Thanks to Mr. Dangelo Salinas-Valle for his support in the development of the experimental procedures.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Montofré, Í.L., Lam, E.J., Ramírez, Y. et al. Evaluation of copper tailing amendments through poultry waste and ammonium nitrate. Environ Geochem Health 43, 2213–2230 (2021). https://doi.org/10.1007/s10653-020-00745-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-020-00745-6

