Skip to main content

Advertisement

Log in

Evaluation of copper tailing amendments through poultry waste and ammonium nitrate

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this study, two amendments, poultry waste and ammonium nitrate, were evaluated to condition and stabilize a mine tailing and thus help the vegetation cover settle. Individually, ammonium nitrate was tested as a nitrogen source and chicken bone ash as a phosphate source. For this, laboratory tests were made on soil columns from the area to be remediated. The mobility and availability of metals and nutrients were determined by analyzing their leachates chemically. The results showed that the use of chicken bone ash decreases soluble metal concentrations, particularly in Fe and soluble Mn. On the other hand, experimental conditions proved that the acidification produced by ammonium nitrate nitrification does not significantly increase the lechate metal content. Therefore, its use for fertilization does not involve phytotoxicity risks. Regarding the availability of macronutrients as well as trace elements, the results showed that the concentrations lie within the ranges suitable for plant nutrition. So, the treatments are effective both for fertilization and phytoremediation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbaspour, A., Kalbasi, M., Hajrasuliha, S., & Fotovat, A. (2008). Effect of organic matter and salinity on ethylenediaminetetraacetic acid-extractable and solution species of cadmium and lead in three agricultural soils. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103620801925380

    Article  Google Scholar 

  • Acosta, J. A., Abbaspour, A., Martínez, G. R., Martínez-Martínez, S., Zornoza, R., Gabarrón, M., & Faz, A. (2018). Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere, 204, 71–78. https://doi.org/10.1016/j.chemosphere.2018.04.027

    Article  CAS  Google Scholar 

  • Adiansyah, J. S., Rosano, M., Vink, S., & Keir, G. (2015). A framework for a sustainable approach to mine tailings management: Disposal strategies. Journal of Cleaner Production, 108, 1–13. https://doi.org/10.1016/j.jclepro.2015.07.139

    Article  Google Scholar 

  • Ahmad, M., Hashimoto, Y., Moon, D. H., Lee, S. S., & Ok, Y. S. (2012). Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2012.01.047

    Article  Google Scholar 

  • Ahmad, M., Moon, D. H., Lim, K. J., Shope, C. L., Lee, S. S., Usman, A. R. A., et al. (2012). An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1550-1

    Article  Google Scholar 

  • Ahmad, M., Soo Lee, S., Yang, J. E., Ro, H. M., Han Lee, Y., & Sik Ok, Y. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2012.01.003

    Article  Google Scholar 

  • Anawar, H. M., Freitas, M. C., Canha, N., & Regina, I. S. (2011). Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-011-9378-2

    Article  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., et al. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Science Reviews. https://doi.org/10.1016/j.earscirev.2017.06.005

    Article  Google Scholar 

  • Ashworth, D. J., & Alloway, B. J. (2007). Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behaviour and plant uptake. Water Air and Soil Pollution. https://doi.org/10.1007/s11270-006-9331-7

    Article  Google Scholar 

  • Barbosa, B., & Fernando, A. L. (2018). Aided Phytostabilization of mine waste. In Bio-geotechnologies for mine site rehabilitation (pp. 147-157). Elsevier. https://doi.org/10.1016/B978-0-12-812986-9.00009-9.

  • Basta, N. T., & Tabatabai, M. A. (1985). Determination of exchangeable bases in soils by ion chromatography1. Soil Science Society of America Journal, 49(1), 84. https://doi.org/10.2136/sssaj1985.03615995004900010017x

    Article  CAS  Google Scholar 

  • Bingham, F. T. (1965). Methods of soil analysis. part 2. chemical and microbiological properties. Doi: https://doi.org/10.2134/agronmonogr9.2.2ed.

  • Bingham, F. T. (1982). Boron. In A. S. of Agronomy (Ed.), Methods in Soil Analysis, Part 2: Chemical and microbial properties (2nd edn., pp. 431–448).

  • Blakemore, L. C. (1972). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report, 10, A11–A21.

    Google Scholar 

  • Blakemore, L., Searle, P., & Daly, B. (1981). Methods for chemical analysis of soils. New Zealnd Soil Bureau Scientific Report 10A. Dsir.

  • Bloise, A., Barca, D., Gualtieri, A. F., Pollastri, S., & Belluso, E. (2016). Trace elements in hazardous mineral fibres. Environmental Pollution, 216, 314–323. https://doi.org/10.1016/j.envpol.2016.06.007

    Article  CAS  Google Scholar 

  • Bloise, A., Punturo, R., Catalano, M., Miriello, D., & Cirrincione, R. (2016). Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Italian Journal of Geosciences, 135(2), 268–279. https://doi.org/10.3301/IJG.2015.24

    Article  Google Scholar 

  • Briggs, P. H. (1996). Forty elements by inductively coupled plasma-atomic emission spectrometry. In Analytical methods manual for the mineral resource surveys program, US geological survey: US geological survey (pp. 77–94). Arbogast BF.

  • Brown, J. R. (1988). Recommended chemical soil test procedures for the North Central Region. Columbia: North Central Regional Research Publication.

    Google Scholar 

  • Choppala, G., Kunhikrishnan, A., Seshadri, B., Park, J. H., Bush, R., & Bolan, N. (2018). Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 184, 255–260. https://doi.org/10.1016/j.gexplo.2016.07.012

    Article  CAS  Google Scholar 

  • Chu, Z., Wang, X., Wang, Y., Zha, F., Dong, Z., Fan, T., & Xu, X. (2020). Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings. Environmental Earth Sciences, 79(3), 68. https://doi.org/10.1007/s12665-020-8807-x

    Article  CAS  Google Scholar 

  • Clemente, R., Dickinson, N. M., & Lepp, N. W. (2008). Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution. https://doi.org/10.1016/j.envpol.2007.11.024

    Article  Google Scholar 

  • Dahlquist, R. L., & Knoll, J. W. (1978). Inductively coupled plasma-atomic emission spectrometry: Analysis of biological materials and soils for major, trace, and ultra-trace elements. Applied Spectroscopy, 32(1), 1–30. https://doi.org/10.1366/000370278774331828

    Article  CAS  Google Scholar 

  • de Souza, F. G., Pereira, J., da Silva Mendes, J., & August, L. (2016). Evaluation of methods for SO. Journal of Current Research, 8(09), 37696–37699.

    Google Scholar 

  • Esquenazi, E. L., Norambuena, B. K., Bacigalupo, Í. M., & Estay, M. G. (2018). Evaluation of soil intervention values in mine tailings in northern Chile. PeerJ, 6, e5879. https://doi.org/10.7717/peerj.5879

    Article  CAS  Google Scholar 

  • FAO. (2019). Food and agriculture organization of the United Nations. https://www.fao.org/ag/aga/agap/frg/afris/default.htm. Accessed 1 Aug 2019.

  • Fassel, V. A., & Kniseley, R. N. (1974). Inductively coupled plasma-optical emission spectroscopy. Analytical Chemistry. https://doi.org/10.1021/ac60349a722

    Article  Google Scholar 

  • Fellet, G., Marchiol, L., Perosa, D., & Zerbi, G. (2007). The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2007.06.011

    Article  Google Scholar 

  • Finck, A. (1982). Fertilizers and fertilization: introduction and practical guide to crop fertilization. Berlin: Verlag Chemie.

    Google Scholar 

  • Guntzer, F., Keller, C., & Meunier, J. D. (2012). Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32(1), 201–213. https://doi.org/10.1007/s13593-011-0039-8

    Article  Google Scholar 

  • Hartley, W., Edwards, R., & Lepp, N. W. (2004). Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environmental Pollution. https://doi.org/10.1016/j.envpol.2004.02.017

    Article  Google Scholar 

  • Hashimoto, Y., Matsufuru, H., & Sato, T. (2008). Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere. https://doi.org/10.1016/j.chemosphere.2008.07.033

    Article  Google Scholar 

  • Hirzel, J. (2010). Uso de enmiendas orgánicas en frutales de hoja caduca: consideraciones técnicas y dosificaciones. Copefrut, 2, 42–48.

    Google Scholar 

  • Hoffmann, V. H., McRae, G. J., & Hungerbühler, K. (2004). Methodology for early-stage technology assessment and decision making under uncertainty: application to the selection of chemical processes. Industrial and Engineering Chemistry Research, 43(15), 4337–4349. https://doi.org/10.1021/ie030243a

    Article  CAS  Google Scholar 

  • Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., & Huang, L. (2017). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-016-9873-6

    Article  Google Scholar 

  • Johnson, B. W., & Goldblatt, C. (2017). A secular increase in continental crust nitrogen during the Precambrian. arXiv preprint arXiv:1709.02412. https://doi.org/10.7185/geochemlet.1731.

  • Kabas, S., Faz, A., Acosta, J. A., Arocena, J. M., Zornoza, R., Martínez-Martínez, S., & Carmona, D. M. (2014). Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-013-9517-z

    Article  Google Scholar 

  • Koo, N., Lee, S. H., & Kim, J. G. (2012). Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-011-9419-x

    Article  Google Scholar 

  • Lam, E. J., Gálvez, M. E., Cánovas, M., Montofré, I. L., Rivero, D., & Faz, A. (2016). Evaluation of metal mobility from copper mine tailings in northern Chile. Environmental Science and Pollution Research, 23(12), 11901–11915. https://doi.org/10.1007/s11356-016-6405-y

    Article  CAS  Google Scholar 

  • Lam, E. J., Cánovas, M., Gálvez, M. E., Montofré, Í. L., Keith, B. F., & Faz, Á. (2017). Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. Journal of Geochemical Exploration, 182, 210–217. https://doi.org/10.1016/j.gexplo.2017.06.015

    Article  CAS  Google Scholar 

  • Lam, E. J., Gálvez, M. E., Cánovas, M., Montofré, Í. L., & Keith, B. F. (2018). Assessment of the adaptive capacity of plant species in copper mine tailings in arid and semiarid environments. Journal of Soils and Sediments, 18(6), 2203–2216. https://doi.org/10.1007/s11368-017-1835-9

    Article  CAS  Google Scholar 

  • Lam Esquenazi, E. J., Keith Norambuena, B. F., Montofre Bacigalupo, Í. L., & Gálvez Estay, M. E. (2019). Necessity of intervention policies for tailings identified in the Antofagasta Region Chile. Revista Internacional de Contaminación Ambiental, 35(3), 515–539. https://doi.org/10.20937/rica.2019.35.03.01

    Article  Google Scholar 

  • Lam, E. J., Montofré, I. L., Álvarez, F. A., Gaete, N. F., Poblete, D. A., & Rojas, R. J. (2020). Methodology to prioritize chilean tailings selection, according to their potential risks. International Journal of Environmental Research and Public Health, 17(11), 3948. https://doi.org/10.3390/ijerph17113948

    Article  Google Scholar 

  • Li, X., & Huang, L. (2015). Toward a new paradigm for tailings phytostabilization—nature of the substrates, amendment options, and anthropogenic pedogenesis. Critical Reviews in Environmental Science and Technology, 45(8), 813–839. https://doi.org/10.1080/10643389.2014.921977

    Article  CAS  Google Scholar 

  • Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W. T., Oh, S. E., et al. (2013). Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environmental Earth Sciences. https://doi.org/10.1007/s12665-012-1929-z

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Marchiol, L., Fellet, G., Perosa, D., & Zerbi, G. (2007). Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: A field experience. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2007.03.018

    Article  Google Scholar 

  • Nieto, K. F., & Frankenberger, W. T. (1985a). Single Column Ion Chromatography: I. Analysis of Inorganic Anions in Soils1. Soil Science Society of America Journal, 49(3), 587. https://doi.org/10.2136/sssaj1985.03615995004900030011x

    Article  CAS  Google Scholar 

  • Nieto, K. F., & Frankenberger, W. T. (1985b). Single column ion chromatography: II. analysis of ammonium, alkali metals, and alkaline earth cations in soils1. Soil Science Society of America Journal, 49(3), 592. https://doi.org/10.2136/sssaj1985.03615995004900030012x

    Article  CAS  Google Scholar 

  • Noirant, G., Benzaazoua, M., Kongolo, M., Bussière, B., & Frenette, K. (2019). Alternatives to xanthate collectors for the desulphurization of ores and tailings: Pyrite surface chemistry. Colloids and Surfaces A Physicochemical and Engineering Aspects, 577, 333–346. https://doi.org/10.1016/j.colsurfa.2019.05.086

    Article  CAS  Google Scholar 

  • Ok, Y. S., Lee, S. S., Jeon, W. T., Oh, S. E., Usman, A. R. A., & Moon, D. H. (2011). Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-010-9362-2

    Article  Google Scholar 

  • Ok, Y. S., Oh, S. E., Ahmad, M., Hyun, S., Kim, K. R., Moon, D. H., et al. (2010). Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences. https://doi.org/10.1007/s12665-010-0674-4

    Article  Google Scholar 

  • Pugnaloni, A., Giantomassi, F., Lucarini, G., Capella, S., Bloise, A., Di Primio, R., & Belluso, E. (2013). Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: an in vitro pilot study. Acta Histochemica, 115(2), 100–112. https://doi.org/10.1016/j.acthis.2012.04.004

    Article  CAS  Google Scholar 

  • Rhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1989.03615995005300020067x

    Article  Google Scholar 

  • Rojas, L., Larrain, P., Riveros, F., Sierra, C., Chiang, A., Martínez, L., & Alcaino, E. (2010). Producción integrada de hortalizas en la Región de Coquimbo (Boletín IN.). Instituto de Investigaciones Agropecuarias, Centro Regional de Investigaciones Intihuasi.

  • Roongtanakiat, N., Osotsapar, Y., & Yindiram, C. (2008). Effects of soil amendment on growth and heavy metals content in vetiver grown on iron ore tailings. Kasetsart Journal Natural Science, 42, 397–406.

    CAS  Google Scholar 

  • Sadzawka, A., Carrasco, M., Demanet, R., Flores, H., Grez, R., Mora, M., et al. (2007). Métodos de análisis de lodos y suelos. Comisión de Normalización y Acreditación CNA de la SOciedad Chilena de la Ciencia del Suelo.

  • Sainju, U. M. (2017). Determination of nitrogen balance in agroecosystems. MethodsX, 4, 199–208. https://doi.org/10.1016/j.mex.2017.06.001

    Article  Google Scholar 

  • Salter, R. (2000). Trastornos y lesiones del sistema musculoesquelético. Introducción a la ortopedia, fracturas y lesiones articulares, reumatología, osteopatía metabólica y rehabilitación (3°). Barcelona, España: Masson, S.A.

  • Santos, E. S., Abreu, M. M., & Macías, F. (2019). Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.02.172

    Article  Google Scholar 

  • Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D., & Bharagava, R. N. (2019). Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. In Reviews of environmental contamination and toxicology (Vol 249, pp. 71–131). Cham: Springer.

  • Schippers, A., Jozsa, P. G., Sand, W., Kovacs, Z. M., & Jelea, M. (2000). Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiology Journal. https://doi.org/10.1080/01490450050023827

    Article  Google Scholar 

  • Schroeder, K., Rufaut, C. G., Smith, C., Mains, D., & Craw, D. (2005). Rapid plant-cover establishment on gold mine tailings in southern New Zealand: Glasshouse screening trials. International Journal of Phytoremediation. https://doi.org/10.1080/16226510500327178

    Article  Google Scholar 

  • Sobek, A. A. (1978). Field and laboratory methods applicable to overburdens and minesoils. Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

  • Studdert, G. A., & Echeverria, H. E. (2000). Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal, 64(4), 1496–1503. https://doi.org/10.2136/sssaj2000.6441496x

    Article  CAS  Google Scholar 

  • Tan, K. H. (1995). Soil sampling, preparation, and analysis. New York: Marcel Dekker Inc.

    Google Scholar 

  • Touceda-González, M., Álvarez-López, V., Prieto-Fernández, Á., Rodríguez-Garrido, B., Trasar-Cepeda, C., Mench, M., & Kidd, P. S. (2017). Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. Journal of environmental management, 186, 301–313. https://doi.org/10.1016/j.jenvman.2016.09.019

    Article  CAS  Google Scholar 

  • Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025

    Article  CAS  Google Scholar 

  • Watson, M. E. (1998). Boron: Reconmended chemical soil test procedures for the North Central Region.

  • Westerman, R. L. (1990). Soil testing and plant analysis. In Soil science of America book series (3rd ed.).

  • Ye, L. L., Chen, Y. S., Chen, Y. D., Qian, L. W., Xiong, W. L., Xu, J. H., & Jiang, J. P. (2020). Phytomanagement of a chromium-contaminated soil by a high-value plant: Phytostabilization of heavy metal contaminated sites. BioResources, 15(2), 3545–3565.

    CAS  Google Scholar 

Download references

Acknowledgements

This study is part of CORFO-INNOVA Project 08CM01-05 “Integrated development of magneto-chemical technologies and phytotechnologies applied to the remediation of heavy metals in mining environmental liability development.” Thanks to Mr. Dangelo Salinas-Valle for his support in the development of the experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ítalo L. Montofré.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montofré, Í.L., Lam, E.J., Ramírez, Y. et al. Evaluation of copper tailing amendments through poultry waste and ammonium nitrate. Environ Geochem Health 43, 2213–2230 (2021). https://doi.org/10.1007/s10653-020-00745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00745-6

Keywords