Skip to main content

Advertisement

Log in

Oral bioaccessibility of potentially toxic elements (PTEs) and related health risk in urban playground soil from a medieval bell metal industrial town Khagra, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In vitro oral bioaccessibility assay (simple bioaccessibility extraction test) was used to assess bioaccessible PTEs (As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sn, and Zn) in 16 playground soils of Khagra, which is a medieval bell metal industrial town at Murshidabad district, West Bengal, India. The aim was also to establish levels of potentially toxic elements (PTEs) in soil, their origin, and human health risk, particularly on children. The average pseudo-total PTEs content in playground soil samples was in the decreasing order of Fe (18,988 mg kg−1) > Zn (1229 mg kg−1) > Cu (999 mg kg−1) > Mn (343 mg kg−1) > Pb (181 mg kg−1) > Sn (132 mg kg−1) > Co (8.63 mg kg−1) > As (5.21 mg kg−1) > Cd (0.88 mg kg−1). The pollution indices indicate significant enrichment of Cd, Cu, Pb, Zn, and Sn in the playground. The bioaccessible percentage of PTEs in the 16 playground soils ranged from 0 to 80.25%, where the range of percentage of bioaccessibility was 13.24–62.50, 0–61.46, 16.82–28.79, 5.05–73.06, 0.96–6.14, 2.28–38, and 0–80 for As, Cd, Co, Cu, Fe, Ni, and Zn, respectively. The order of percentage of bioaccessibility was As > Mn > Zn > Sn > Cu > Co > Pb > Cd > Ni > Fe. PCA extracted two major factors indicating the anthropogenic (Cd, Cu, Ni, Pb, Zn, and Sn) and geogenic (Co, Fe, and Mn) source. Stepwise multiple regression analysis exhibited that the oral bioaccessibility of PTEs did not correlate with physicochemical parameters like pH, EC. In contrast, Sn had a significant correlation with that of organic matter. The health risk for pseudo-total as well as bioavailable fraction in playground soil depicted that children were more vulnerable to ingestion of soil contaminated with PTEs, particularly for Cu and Pb. A risk management plan with the bioaccessible data involving detailed site-specific exposure factors to indicate the importance of the study in terms of child health safety is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.

    Article  CAS  Google Scholar 

  • Acosta, J. A., Cano, A. F., Arocena, J. M., Debela, F., & Martínez-Martínez, S. (2009). Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149, 101–109.

    Article  CAS  Google Scholar 

  • Acosta, J. A., Faz, A., Kalbitz, K., Jansen, B., & Martínez-Martínez, S. (2014). Partitioning of heavy metals over different chemical fraction in road dust of Murcia (Spain) as a basis for risk assessment. Journal of Geochemical Exploration, 144, 298–305.

    Article  CAS  Google Scholar 

  • Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environmental International, 30, 1009–1017.

    Article  CAS  Google Scholar 

  • Al-Hwaiti, M., & Al-Khashman, O. (2015). Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials. Environmental Geochemistry and Health, 37(2), 287–304.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A. (2012). Assessment of heavy metal accumulation in urban soil around potash industrial site in the east of the Dead Sea and their environmental risks. Soil and Sediment Contamination: An International Journal, 21(2), 276–290.

    Article  CAS  Google Scholar 

  • Ali, H., & Khan, E. (2019). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353–1376.

    Article  CAS  Google Scholar 

  • Andersson, M., Ottesen, R. T., & Langedal, M. (2010). Geochemistry of urban surface soils—monitoring in Trondheim, Norway. Geoderma, 156, 112–118.

    Article  CAS  Google Scholar 

  • Bai, J., Cui, B., Wang, Q., Gao, H., & Ding, Q. (2009). Assessment of heavy metal contamination of roadside soils in Southeast China. Stochastic Environmental Research and Risk Assessment, 23, 341–347.

    Article  Google Scholar 

  • Benndorf, J., & Menz, J. (2013). Improving the assessment of uncertainty and risk in the spatial prediction of environmental impacts: a new approach for fitting geostatistical model parameters based on dual Kringing in the presence of a trend. Stochastic Environmental Research and Risk Assessment, 28, 627–637.

    Article  Google Scholar 

  • Bi, X., Li, Z., Sun, G., Liu, J., & Han, Z. (2015). In vitro bioaccessibility of lead in surface dust and implications for human exposure: A comparative study between industrial area and urban district. Journal of Hazardous Materials, 297, 191–197.

    Article  CAS  Google Scholar 

  • Čakmak, D., Perović, V., Kresović, M., Pavlović, D., Pavlović, M., Mitrović, M., et al. (2020). Sources and a health risk assessment of potentially toxic elements in dust at children’s playgrounds with artificial surfaces: A case study in belgrade. Archives of Environmental Contamination and Toxicology, 78, 190–205.

    Article  Google Scholar 

  • Chen, Y. F. (2011). Review of the research on heavy metal contamination of China’s city soil and its treatment method. China Population, Resources and Environment, 21(3), 536–539.

    Google Scholar 

  • Comero, S., Vaccarob, S., Locoro, G., Capitani, L. D., & Gawlik, B. M. (2014). Characterization of the Danube River sediments using the PMF multivariate approach. Chemosphere, 95, 329–335.

    Article  CAS  Google Scholar 

  • Das, S. K., & Chakrapani, G. J. (2011). Assessment of trace metal toxicity in soils of Raniganj Coalfield, India. Environmental Monitoring and Assessment, 177, 63–71.

    Article  CAS  Google Scholar 

  • Drexler, J. W., & Brattin, W. J. (2007). An in vitro procedure for estimation of lead relative bioavailability: With validation. Human and Ecological Risk Assessment: An International Journal, 13, 383–401.

    Article  CAS  Google Scholar 

  • Du, Y., Gao, B., Zhou, H., Ju, X., Hao, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environmental Sciences, 18, 299–309.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, 4501–4512.

    Article  CAS  Google Scholar 

  • Glorennec, P., Lucas, J. P., Mandin, C., & Le-Bot, B. (2012). French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data. Environment International, 45, 129–134.

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., & Balachandran, S. (2018). Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. Ecotoxicology and Environmental Safety, 154, 280–293.

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., Hoque, R. R., & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety, 138, 231–241.

    Article  CAS  Google Scholar 

  • Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: A review. Environmental Science and Pollution Research, 22, 2491–2504.

    Article  CAS  Google Scholar 

  • Gu, Y. G., Gao, Y. P., & Lin, Q. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58.

    Article  CAS  Google Scholar 

  • Guney, M., Zagury, G. J., Dogan, N., & Onay, T. T. (2010). Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. Journal of Hazardous Materials, 182, 656–664.

    Article  CAS  Google Scholar 

  • Guo, B., Su, Y., Pei, L., Wang, X., Zhang, B., Zhang, D., et al. (2020). Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: A case study in Xi’an, Shaanxi Province, a northwest city of China. Environmental Science and Pollution Research, 27, 24400–24412.

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hamad, S. H., Schauer, J. J., Shafer, M. M., Al-Rheem, E. A., Skaar, P. S., Heo, J., et al. (2014). Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq. Science of the Total Environment, 494–495, 39–48.

    Article  Google Scholar 

  • Han, Q., Wang, M., Cao, J., Gui, C., Liu, Y., He, X., et al. (2020). Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicology and Environmental Safety, 191, 110157.

    Article  CAS  Google Scholar 

  • Intawongse, M., & Dean, J. R. (2008). Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environmental Pollution, 152, 60–72.

    Article  CAS  Google Scholar 

  • Islam, S., Ahmed, K., & Masunaga, S. (2015). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512, 94–102.

    Article  Google Scholar 

  • Jin, Y., O’Connor, D., Ok, Y. S., Tsang, D. C. W., Liu, A., & Hou, D. (2019). Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 124, 320–328.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Kanda, A., Ncube, F., Mushati, E., Chiboiwa, E., Mwanza, E., & Makumbe, P. (2019). Contamination and health risk assessment of trace elements in soil at play centers of urban low-income settings. Human and Ecological Risk Assessment: An International Journal. https://doi.org/10.1080/10807039.2019.1597625.

    Article  Google Scholar 

  • Kennou, B., Meray, M. E., Romane, A., & Youssef, A. (2015). Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environmental Earth Sciences, 74, 5849–5858.

    Article  CAS  Google Scholar 

  • Khillare, P. S., Balachandran, S., & Meena, B. R. (2004). Spatial and temporal variation of heavy metals in atmospheric aerosol of Delhi. Environmental Monitoring and Assessment, 90, 1–21.

    Article  CAS  Google Scholar 

  • Kicinska, A., & Bozecki, P. (2018). Metals and mineral phases of dusts collected in different urban parks of Krakow and their impact on the health of city residents. Environmental Geochemistry and Health, 40, 473–488.

    Article  CAS  Google Scholar 

  • Kim, E. J., Yoo, J. C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.

    Article  CAS  Google Scholar 

  • Kříbek, B., Nyambe, I., Majer, V., Knésl, I., Mihaljevič, M., Ettler, V., et al. (2019). Soil contamination near the Kabwe Pb-Zn smelter in Zambia: Environmental impacts and remediation measures proposal. Journal of Geochemical Exploration, 197, 159–173.

    Article  Google Scholar 

  • Kumar, B., Verma, V. K., Naskar, A. K., Sharma, C. S., & Mukherjee, D. P. (2014). Bioavailability of metals in soil and health risk assessment of populations near an Indian chromite mine area. Human Ecological Risk Assessment, 20, 917–928.

    Article  CAS  Google Scholar 

  • Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., et al. (2012). Integrated assessment of heavy metal contamination in sediments from a coastal industrial Basin, NE China. PLoS ONE, 7, e39690.

    Article  CAS  Google Scholar 

  • Li, H., Qian, X., Hu, W., Wang, Y., & Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment, 456, 212–221.

    Article  Google Scholar 

  • Lovaković, B. T. (2020). Cadmium, arsenic, and lead: Elements affecting male reproductive health. Current Opinion in Toxicology, 19, 7–14.

    Article  Google Scholar 

  • Lu, Y., Yin, W., Huang, L., Zhang, G., & Zhao, Y. (2011). Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Environmental Geochemistry and Health, 33, 93–102.

    Article  CAS  Google Scholar 

  • Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., & Yu, S. (2012a). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96.

    Article  CAS  Google Scholar 

  • Luo, X. S., Yu, S., & Li, X. D. (2012b). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27, 995–1004.

    Article  CAS  Google Scholar 

  • Ma, J., Li, Y., Liu, Y., Wang, X., Lin, C., & Cheng, H. (2020). Metal(loid) bioaccessibility and children’s health risk assessment of soil and indoor dust from rural and urban school and residential areas. Environmental Geochemistry and Health, 42, 1291–1303.

    Article  CAS  Google Scholar 

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archive of Environmental Contamination Toxicology, 55, 21–32.

    Article  CAS  Google Scholar 

  • Malkoc, S., Yazici, B., & Koparal, A. S. (2010). Assessment of the levels of heavy metal pollution in roadside soils of Eskisehir, Turkey. Environmental Toxicological Chemistry, 29, 2720–2725.

    Article  CAS  Google Scholar 

  • Martin, H. W., & Kaplan, D. I. (1998). Temporal changes in cadmium, thallium, and vanadium mobility in soil and phytoavailability under field conditions. Water, Air, and Soil pollution, 101, 399–410.

    Article  CAS  Google Scholar 

  • Martinez, C. E., & Motto, H. L. (2000). Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 107, 153–158.

    Article  CAS  Google Scholar 

  • Mehard, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37, 229–234.

    Article  Google Scholar 

  • Mendoza, C. J., Garrido, R. T., Quilodran, R. C., Segovia, C. M., & Parada, A. J. (2017). Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere, 176, 81–88.

    Article  Google Scholar 

  • Miller, D. D., Schricker, B. R., Rasmussen, R. R., & Campen, D. V. (1981). An in vitro method for estimation of iron availability from meals. The American Journal of Clinical Nutrition, 34, 2248–2256.

    Article  CAS  Google Scholar 

  • Mingot, J., De Miguel, E., & Chacón, E. (2011). Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): A three-method comparison and implications for risk assessment. Chemosphere, 84, 1386–1391.

    Article  CAS  Google Scholar 

  • Mohammad, B. N. A., Lin, C. Y., Cleophas, F., Abdullah, M. H., & Musta, B. (2015). Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental Monitoring Assessment, 187, 4190.

    Article  Google Scholar 

  • Mohiuddin, K. M., Zakir, H. M., Otomo, K., Sharmin, S., & Shikazono, N. (2010). Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal Environmental Science and Technology, 7, 17–28.

    Article  CAS  Google Scholar 

  • Molinaa, R. M., Schaiderb, L. A., Donagheya, T. C., Shineb, J. P., & Brain, J. D. (2013). Mineralogy affects geo-availability, bioaccessibility and bioavailability of zinc. Environmental Pollution. https://doi.org/10.1016/j.envpol.2013.07.013.

    Article  Google Scholar 

  • Moreira, L. J., da Silva, E. B., Fontes, M. P., Liu, X., & Ma, L. Q. (2018). Speciation, bioaccessibility and potential risk of chromium in Amazon forest soils. Environmental Pollution, 239, 384–391.

    Article  CAS  Google Scholar 

  • Moya, J., Bearer, C. F., & Etzel, R. A. (2004). Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics, 113, 996–1006.

    Article  Google Scholar 

  • Muller, G. (1969). Index of Geo-accumulation in sediments of the Rhine River. Journal of Geology, 2, 108–118.

    Google Scholar 

  • Naher, S., & Chattopadhyay, P. K. (2015). Origin of high tin bronze alloy in Bengal, Jharkhand and Odisha: Ethno-archaeo metallurgical studies. Man in India, 95, 185–193.

    Google Scholar 

  • Naidu, R., Bolan, N. S., Megharaj, M., Juhasz, A. L., Gupta, S., Clothier, B., et al. (2008). Bioavailability, definition, assessment and implications for risk assessment. In R. Naidu (Ed.), Chemical bioavailability in terrestrial environment (pp. 1–8). Amsterdam: Elsevier.

    Google Scholar 

  • Nakamaru, Y., & Uchida, S. (2008). Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behaviour. Journal of Environmental Radioactivity, 99, 1003–1010.

    Article  CAS  Google Scholar 

  • Oliver, M. A. (1990). Kriging: A method of interpolation for geographical information systems. International Journal Geographical Information System, 4, 313–332.

    Article  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Pavlović, P., Marković, M., Kostić, O., Sakan, S., Đorđević, D., Perović, V., et al. (2019). Evaluation of potentially toxic element contamination in the riparian zone of the River Sava. Catena, 174, 399–412.

    Article  Google Scholar 

  • Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.

    Article  CAS  Google Scholar 

  • Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377–385.

    Article  CAS  Google Scholar 

  • Rao, B. S. N., & Prabhavathi, T. (1978). An in vitro method for predicting the bioavailability of iron from foods. The American Journal of Clinical Nutrition, 31, 169–175.

    Article  CAS  Google Scholar 

  • Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-arias, M. (2008). Multi-scale analysis of heavy metal contents in Spanish agricultural top soils. Chemosphere, 70, 1085–1096.

    Article  CAS  Google Scholar 

  • Rodríguez Martín, J. A., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200–201, 180–188.

    Article  Google Scholar 

  • Rodríguez Martín, J. A., Vázquez de la Cueva, A., Grau Corbí, J. M., & Arias, M. L. (2007). Factors controlling the spatial variability of copper in Topsoils of the Northeastern region of the Iberian Peninsula, Spain. Water, Air, and Soil Pollution, 186, 311–321.

    Article  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., Uchino, T., & Ando, M. (2005). Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere, 58, 799–810.

    Article  CAS  Google Scholar 

  • Rozanski, S. L., Kwasowski, W., Castejon, J. M. P., & Hardy, A. (2018). Heavy metal content and mobility in urban soils of public playgrounds and sport facility areas, Poland. Chemosphere, 212, 456–466.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Schrauzer, G. N. (2004). Cobalt. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment (pp. 825–840). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Chapter  Google Scholar 

  • Sevim, Ç., Doğan, E., & Comakli, S. (2020). Cardiovascular disease and toxic metals. Current Opinion in Toxicology, 19, 88–92.

    Article  Google Scholar 

  • Sialelli, J., Davidson, C. M., & Hursthouse, A. S. (2011). Ajmone-Marsan, Franco Human bioaccessibility of Cr, Cu, Ni, Pb and Zn in urban soils from the city of Torino, Italy. Environmental Chemistry Letters, 9, 197–202.

    Article  CAS  Google Scholar 

  • Sialelli, J., Urquhart, G. J., Davidson, C. M., & Hursthouse, A. S. (2010). Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environmental Geochemistry and Health, 32, 517–527.

    Article  CAS  Google Scholar 

  • Singh, U. K., & Kumar, B. (2017). Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere, 174, 183–199.

    Article  CAS  Google Scholar 

  • Su, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24.

    Google Scholar 

  • Sulaiman, F. R., Mohd Ghazali, F., & Ismail, I. (2020). Health risks assessment of metal exposure from a tropical semi-urban soil. Soil and Sediment Contamination: An International Journal, 29(1), 14–25.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174, 455–462.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Taylor, M. P., Camenzuli, D., Kristensen, L. J., Forbes, M., & Zahran, S. (2013). Environmental lead exposure risks associated with children’s outdoor playgrounds. Environmental Pollution, 178, 447–454.

    Article  CAS  Google Scholar 

  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, 400(1–3), 270–282.

    Article  CAS  Google Scholar 

  • Thuong, N. T., Yoneda, M., Ikegami, M., & Takakura, M. (2013). Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches. Environmental Monitoring and Assessment, 185, 8065–8075.

    Article  Google Scholar 

  • Tian, H. Z., Zhu, C. Y., Gao, J. J., Cheng, K., Hao, J. M., Wang, K., et al. (2015). Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmospheric Chemistry and Physics, 15, 10127–10147.

    Article  CAS  Google Scholar 

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.

    Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis (vol. 2, pp. 131–160).

  • USEPA. (1989). Risk assessment guidance for Superfund (Vol. I). In Human health evaluation manual, EPA/540/1-89/002. Office of Solid Waste and Emergency Response.

  • USEPA. (2001). Risk assessment guidance for Superfund (Vol. III—part A). In Process for conducting probabilistic risk assessment, EPA 540-R-02-002. Washington, DC: US Environmental Protection Agency.

  • USEPA. (2002). Child-specific exposure factors handbook, EPA/600/P-00/002B. Washington, DC: National Center for Environmental Assessment.

    Google Scholar 

  • Valido, I. H., Padoan, E., Moreno, T., Querol, X., Font, O., & Amato, F. (2018). Physico-chemical characterization of playground sand dust, inhalable and bioaccessible fractions. Chemosphere, 190, 454–462.

    Article  CAS  Google Scholar 

  • Verla, E. N., Verla, A. W., & Enyoh, C. E. (2020). Bioavailability, average daily dose and risk of heavy metals in soils from children playgrounds within Owerri, Imo State, Nigeria. Chemistry Africa, 3, 427–438.

    Article  CAS  Google Scholar 

  • Verma, S. K., Masto, R. E., Gautam, S., Choudhury, D. P., Ram, L. C., Maiti, S. K., et al. (2015). Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 162, 138–147.

    Article  CAS  Google Scholar 

  • Wei, X., Gao, B., Wang, P., Zhou, H. D., & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, 186–192.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., & Shibata, Y. (2006). Size distributions of soil particles adhered to children’s hands. Archives of Environmental Contamination and Toxicology, 51, 157–163.

    Article  CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of Total Environment, 355, 176–186.

    Article  Google Scholar 

  • Zhang, X. W., Yang, L. S., Li, Y. H., Li, H. R., Wang, W. Y., & Ye, B. X. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. Environmental Monitoring and Assessment, 184, 2261–2273.

    Article  CAS  Google Scholar 

  • Zhuang, W., & Gao, X. L. (2014). Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: Comparison among typical marine sediment quality indices. PLoS ONE, 9, 94–145.

    Article  Google Scholar 

Download references

Acknowledgements

To the first author, the funding for this study was provided by the UGC Non-NET Fellowship through Visva-Bharati, Santiniketan, India. ICP analytical facilities provided by the CSIR-Central Institute of Mining and Fuel Research (Digwadih Campus), Dhanbad (India), are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Balachandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laha, T., Gope, M., Datta, S. et al. Oral bioaccessibility of potentially toxic elements (PTEs) and related health risk in urban playground soil from a medieval bell metal industrial town Khagra, India. Environ Geochem Health 45, 5619–5637 (2023). https://doi.org/10.1007/s10653-020-00715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00715-y

Keywords

Navigation