First record on mercury accumulation in mice brain living in active volcanic environments: a cytochemical approach

Abstract

The health effects of mercury vapor exposure on the brain in volcanic areas have not been previously addressed in the literature. However, 10% of the worldwide population inhabits in the vicinity of an active volcano, which are natural sources of elemental mercury emission. To evaluate the presence of mercury compounds in the brain after chronic exposure to volcanogenic mercury vapor, a histochemical study, using autometallographic silver, was carried out to compare the brain of mice chronically exposed to an active volcanic environment (Furnas village, Azores, Portugal) with those not exposed (Rabo de Peixe village, Azores, Portugal). Results demonstrated several mercury deposits in blood vessels, white matter and some cells of the hippocampus in the brain of chronically exposed mice. Our results highlight that chronic exposure to an active volcanic environment results in brain mercury accumulation, raising an alert regarding potential human health risks. These findings support the hypothesis that mercury exposure can be a risk factor in causing neurodegenerative diseases in the inhabitants of volcanically active areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aiuppa, A., Dongarrà, G., Valenza, M., Federico, C., & Pecoraino, G. (2003). Degassing of trace volatile metals during the 2001 eruption of Etna. Washington DC American Geophysical Union Geophysical Monograph Series, 139, 41–54.

    CAS  Google Scholar 

  2. Allard, P., Aiupp, A., Loyer, H., Carrot, F., Gaudry, A., Pinte, G., et al. (2000). Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophysical Research Letter, 27(8), 1207–1210.

    CAS  Google Scholar 

  3. Allen, J. L., Oberdorster, G., Morris-Schaffer, K., Wong, C., Klocke, C., Sobolewski, M., et al. (2017). Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology, 59, 140–154.

    CAS  Google Scholar 

  4. Amaral, A., & Rodrigues, A. S. (2007). Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores. Portugal. Environmental Research, 103(3), 419–423.

    CAS  Google Scholar 

  5. Amaral, A., & Rodrigues, A. S. (2011). Volcanogenic contaminants: chronic exposure. In J. Nriagu (Ed.), Encyclopedia of environmental health (pp. 681–689). New York: Elsevier.

    Google Scholar 

  6. Amaral, A., Cruz, J. V., Cunha, R. T., & Rodrigues, A. S. (2006a). Baseline levels of metals in volcanic soils of the Azores (Portugal). Soil and Sediment Contamination, 15, 123–130.

    CAS  Google Scholar 

  7. Amaral, A., Rodrigues, V., Oliveira, J., Pinto, C., Carneiro, V., Sanbento, R., et al. (2006b). Chronic exposure to volcanic environments and cancer incidence in the Azores Portugal. Science of the Total Environmental, 367(1), 123–128.

    CAS  Google Scholar 

  8. Amaral, A. F., Arruda, M., Cabral, S., & Rodrigues, A. S. (2008). Essential and non-essential trace metals in scalp hair of men chronically exposed to volcanogenic metals in the Azores Portugal. Environment International, 34(8), 1104–1108.

    CAS  Google Scholar 

  9. Aschner, M., & Aschner, J. L. (1989). Mucocutaneous lymph node syndrome: Is there a relationship to mercury exposure? American Journal of Diseases of Children, 143(10), 1133–1134.

    CAS  Google Scholar 

  10. Aschner, M., & Aschner, J. L. (1990). Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neuroscience and Biobehavioral Reviews, 14(2), 169–176.

    CAS  Google Scholar 

  11. Bagnato, E., Aiuppa, A., Parello, F., Allard, P., Shinohara, H., Liuzzo, M., et al. (2011). New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bulletin of Volcanology, 73(5), 497–510.

    Google Scholar 

  12. Bagnato, E., Barra, M., Cardellini, C., Chiodini, G., Parello, F., & Sprovieri, M. (2014). First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release. Journal of Volcanology and Geothermal Research, 289, 26–40.

    CAS  Google Scholar 

  13. Bagnato, E., Viveiros, F., Pacheco, J. E., D'Agostino, F., Silva, C., & Zanon, V. (2018). Hg and CO2 emissions from soil diffuse degassing and fumaroles at Furnas Volcano (São Miguel Island, Azores): Gas flux and thermal energy output. Journal of Geochemical Exploration, 190, 39–57.

    CAS  Google Scholar 

  14. Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545–554.

    Google Scholar 

  15. Block, M. L., & Calderón-Garcidueñas, L. (2009). Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neuroscience, 32(9), 506–516.

    CAS  Google Scholar 

  16. Calderón-Garcidueñas, L., Azzarelli, B., Acuna, H., Garcia, R., Gambling, T. M., Osnaya, N., et al. (2002). Air pollution and brain damage. Toxicologic Pathology, 30(3), 373–389.

    Google Scholar 

  17. Campbell, A., Oldham, M., Becaria, A., Bondy, S. C., Meacher, D., Sioutas, C., et al. (2005). Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology, 26(1), 133–140.

    CAS  Google Scholar 

  18. Cariccio, V. L., Samà, A., Bramanti, P., & Mazzon, E. (2019). Mercury involvement in neuronal damage and in neurodegenerative diseases. Biological Trace Element Research, 187(2), 341–356.

    CAS  Google Scholar 

  19. Carvalho, M.R.E. (1999). Hidrogeologia do Maciço Vulcánico de Agua de Pau/Fogo (São Miguel-Açores) Ph.D Thesis. Universidade de Lisboa, Lisboa.

  20. Chang, L. W., & Hartmann, H. A. (1972). Ultrastructural studies of the nervous system after mercury intoxication. Acta Neuropathologica, 20(4), 316–334.

    CAS  Google Scholar 

  21. Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Criticial Reviews in Toxicology, 36(8), 609–662.

    CAS  Google Scholar 

  22. Danscher, G. (1991). Applications of autometallography to heavy metal toxicology. Pharmacology and Toxicology, 68(6), 414–423.

    CAS  Google Scholar 

  23. Danscher, G., & Møller-Madsen, B. (1985). Silver amplification of mercury sulfide and selenide: a histochemical method for light and electron microscopic localization of mercury in tissue. Journal of Histochemistry and Cytochemistry, 33(3), 219–228.

    CAS  Google Scholar 

  24. Danscher, G., Stoltenberg, M., & Juhl, S. (1994). How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathology and Applied Neurobiology, 20(5), 454–467.

    CAS  Google Scholar 

  25. Erickson, M. A., & Banks, W. A. (2013). Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. Journal of Cerebral Blood Flow and Metabolism, 33(10), 1500–1513.

    CAS  Google Scholar 

  26. Fahrenkrog, B., & Harel, A. (2018). Perturbations in traffic: aberrant nucleocytoplasmic transport at the heart of neurodegeneration. Cells, 7(12), 232.

    CAS  Google Scholar 

  27. Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., et al. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. BioMed Research International, 2012, 1–11.

    Google Scholar 

  28. Ferreira, A. F., Garcia, P. V., Camarinho, R., & Rodrigues, A. S. (2015). Volcanogenic pollution and testicular damage in wild mice. Chemosphere, 132, 135–141.

    CAS  Google Scholar 

  29. Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson's disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104(3), 420–432.

    CAS  Google Scholar 

  30. Forsyth, D. J. (2001). Extrapolation of laboratory tests to field populations. In R. F. Shore & B. A. Rattner (Eds.), Ecotoxicology of Wild Mammals (pp. 577–634). New York: Wiley.

    Google Scholar 

  31. Garbuzova-Davis, S., Haller, E., Williams, S. N., Haim, E. D., Tajiri, N., Hernandez-Ontiveros, D. G., et al. (2014). Compromised blood–brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. Journal of Comparative Neurology, 522(13), 3120–3137.

    Google Scholar 

  32. Gray, M. T., & Woulfe, J. M. (2015). Striatal blood–brain barrier permeability in Parkinson's disease. Journal of Cerebral Blood Flow and Metabolism, 35(5), 747–750.

    CAS  Google Scholar 

  33. Graeme, K. A., & Pollack, C. V., Jr. (1998). Heavy metal toxicity, part I: arsenic and mercury. The Journal of Emergency Medicine, 16(1), 45–56.

    CAS  Google Scholar 

  34. Gustin, M. S., Lindberg, S. E., & Weisberg, P. J. (2008). An update on the natural sources and sinks of atmospheric mercury. Applied Geochemistry, 23(3), 482–493.

    CAS  Google Scholar 

  35. Hansell, A., & Oppenheimer, C. (2004). Health hazards from volcanic gases: A systematic literature review. Archives of Environmental Health, 59(12), 628–639.

    CAS  Google Scholar 

  36. Hinkley, T. K., Lamothe, P. J., Wilson, S. A., Finnegan, D. L., & Gerlach, T. M. (1999). Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth and Planetary Scencei Letters, 170, 315–325.

    CAS  Google Scholar 

  37. Jinde, S., Zsiros, V., Jiang, Z., Nakao, K., Pickel, J., Kohno, K., et al. (2012). Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron, 76(6), 1189–1200.

    CAS  Google Scholar 

  38. Kann, O. (2016). The interneuron energy hypothesis: implications for brain disease. Neurobiology of Disease, 90, 75–85.

    CAS  Google Scholar 

  39. Kelman, I., & Mather, T. A. (2008). Living with volcanoes: the sustainable livelihoods approach for volcano-related opportunities. Journal of Volcanology and Geothermal Research, 172(3–4), 189–198.

    CAS  Google Scholar 

  40. Kungolos, A. (2006). Environmental toxicology. Boston: WIT Press.

    Google Scholar 

  41. Larsen, M., Bjarkam, C. R., Stoltenberg, M., Sorensen, J. C., & Danscher, G. (2003). An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histology and Histopathology, 18, 1125–1130.

    CAS  Google Scholar 

  42. Lebel, J., Mergler, D., Branches, F., Lucotte, M., Amorim, M., Larribe, F., et al. (1998). Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin. Environmental Research, 79(1), 20–32.

    CAS  Google Scholar 

  43. Leyshon-Sørland, K., Jasani, B., & Morgan, A. J. (1994). The localization of mercury and metallothionein in the cerebellum of rats experimentally exposed to methylmercury. The Histochemical Journal, 26(2), 161–169.

    Google Scholar 

  44. Linhares, D., Pimentel, A., Borges, C., Cruz, J. V., Garcia, P., & Rodrigues, A. (2019). Cobalt distribution in the soils of São Miguel Island (Azores): From volcanoes to health effects. Science of the Total Environment, 684, 715–721.

    CAS  Google Scholar 

  45. Linhares, D., Garcia, P. V., Viveiros, F., Ferreira, T., & Rodrigues, A. S. (2015). Air pollution by hydrothermal volcanism and human pulmonary function. BioMed Research International, 2015, 1–10.

    Google Scholar 

  46. Madar, A. D., Ewell, L. A., & Jones, M. V. (2019). Pattern separation of spiketrains in hippocampal neurons. Scientific Reports, 9(1), 5282.

    Google Scholar 

  47. Mather, T. A., Pyle, D. M., & Oppenheimer, C. (2003). Tropospheric volcanic aerosol. In A. Robock & C. Oppenheimer (Eds.), Volcanism and the Earth's atmosphere (pp. 189–212). Washington DC: American Geophysical Union.

    Google Scholar 

  48. Morris, G., Puri, B. K., Frye, R. E., & Maes, M. (2018). The putative role of environmental mercury in the pathogenesis and pathophysiology of autism spectrum disorders and subtypes. Molecular Neurobiology, 55(6), 4834–4856.

    CAS  Google Scholar 

  49. Moulton, P. V., & Yang, W. (2012). Air pollution, oxidative stress, and Alzheimer's disease. Environmental Research and Public Health, 2012, 1–9.

    Google Scholar 

  50. Nriagu, J., & Becker, C. (2003). Volcanic emissions of mercury to the atmosphere: global and regional inventories. Science of the Total Environment, 304, 3–12.

    CAS  Google Scholar 

  51. Ogata, M., Kenmotsu, K., Hirota, N., Meguro, T., & Aikoh, H. (1987). Reduction of mercuric ion and exhalation of mercury in acatalasemic and normal mice. Archives of Environmental Health An International Journa I, 42(1), 26–30.

    CAS  Google Scholar 

  52. Ortiz, G. G., Pacheco-Moisés, F. P., Macías-Islas, M. Á., Flores-Alvarado, L. J., Mireles-Ramírez, M. A., González-Renovato, E. D., et al. (2014). Role of the blood–brain barrier in multiple sclerosis. Archives of Medical Research, 45(8), 687–697.

    CAS  Google Scholar 

  53. Palacios, N., Fitzgerald, K. C., Hart, J. E., Weisskopf, M. G., Schwarzschild, M. A., Ascherio, A., et al. (2014). Particulate matter and risk of Parkinson disease in a large prospective study of women. Environmental Health, 13(1), 1–9.

    Google Scholar 

  54. Pamphlett, R., & Kum Jew, S. (2016). Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury. BioMetals, 29(1), 171–175.

    CAS  Google Scholar 

  55. Pamphlett, R., & Kum Jew, S. (2018). Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: Implications for multiple sclerosis, neurodegenerative disorders and gliomas. BioMetals, 31(5), 807–819.

    CAS  Google Scholar 

  56. Pamphlett, R., & Kum Jew, S. (2001). Mercury vapor uptake into the nervous system of developing mice. Neurotoxicology and Teratology, 23(2), 191–196.

    CAS  Google Scholar 

  57. Pamphlett, R., Kum-Jew, S., & Cherepanoff, S. (2019). Mercury in the retina and optic nerve following prenatal exposure to mercury vapor. PLoS ONE, 14(8), 1–16.

    Google Scholar 

  58. Parelho, C., Rodrigues, A. S., Cruz, J. V., & Garcia, P. (2014). Linking trace metals and agricultural land use in volcanic soils: A multivariate approach. Science of the Total Environment, 496, 241–247.

    CAS  Google Scholar 

  59. Piikivi, L., Hänninen, H., Martelin, T., & Mantere, P. (1984). Psychological performance and long-term exposure to mercury vapors. Scandinavian Journal of Work, Environment and Health, 10, 35–41.

    CAS  Google Scholar 

  60. Quéré, J. P., & Vincent, J. P. (1989). Détermination de l'âge chez le mulot gris (Apodemus sylvaticus L., 1758) par la pesée des cristallins. Mammalia, 53, 287–294.

    Google Scholar 

  61. Rice, K. M., Walker, E. M., Jr., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74.

    Google Scholar 

  62. Ritz, B., Lee, P. C., Hansen, J., Lassen, C. F., Ketzel, M., Sørensen, M., et al. (2016). Traffic-related air pollution and Parkinson’s disease in Denmark: A case–control study. Environmental Health Perspectives, 124(3), 351–356.

    CAS  Google Scholar 

  63. Rodrigues, A. S., & Garcia, P. V. (2015). 13. Non-eruptive volcanogenic air pollution and health effects. Handbook of Public Health in Natural Disasters, 223.

  64. Scharfman, H. E. (2016). The enigmatic mossy cell of the dentate gyrus. Nature Reviews Neuroscience, 17(9), 1–14.

    Google Scholar 

  65. Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34, 43–63.

    Google Scholar 

  66. Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., & Stix, J. (2015). Encyclopedia of volcanoes. Amsterdam: Elsevier.

    Google Scholar 

  67. Solan, T. D., & Lindow, S. W. (2014). Mercury exposure in pregnancy: A review. Journal of Perinatal Medicine, 42(6), 725–729.

    CAS  Google Scholar 

  68. Stankovic, R. (2006). Atrophy of large myelinated motor axons and declining muscle grip strength following mercury vapor inhalation in mice. Inhalation Toxicology, 18(1), 57–69.

    CAS  Google Scholar 

  69. Steinwall, O., & Klatzo, I. (1966). Selective vulnerability of the blood-brain barrier in chemically induced lesions. Journal of Neuropathology and Experimental Neurology, 25(4), 542–559.

    CAS  Google Scholar 

  70. Steinwall, O., & Olsson, Y. (1969). Impairment of the blood-brain barrier in mercury poisoning. Acta Neurologica Scandinavica, 45(3), 351–361.

    CAS  Google Scholar 

  71. Takahashi, T., & Shimohata, T. (2019). Vascular dysfunction induced by mercury exposure. International Journal of Molecular Science, 20(10), 1–12.

    Google Scholar 

  72. Takahashi, T., Fujimura, M., Koyama, M., Kanazawa, M., Usuki, F., Nishizawa, M., et al. (2017). Methylmercury causes blood-brain barrier damage in rats via upregulation of vascular endothelial growth factor expression. PLoS ONE, 12(1), 1–10.

    Google Scholar 

  73. Tersago, K., De Coen, W., Scheirs, J., Vermeulen, K., Blust, R., Van Bockstaele, D., et al. (2004). Immunotoxicology in wood mice along a heavy metal pollution gradient. Environmental Pollution, 132, 385–394.

    CAS  Google Scholar 

  74. Viveiros, F., Cardellini, C., Ferreira, T., Caliro, S., Chiodini, G., & Silva, C. (2010). Soil CO2 emissions at Furnas volcano, São Miguel Island, Azores archipelago: Volcano monitoring perspectives, geomorphologic studies, and land use planning application. Journal of Geophysical Research: Solid Earth, 115, 1–17.

    Google Scholar 

  75. Walsh, T. J., & Emerich, D. F. (1988). The hippocampus as a common target of neurotoxic agents. Toxicology, 49(1), 137–140.

    CAS  Google Scholar 

  76. Watt, S. F., Pyle, D. M., Mather, T. A., Day, J. A., & Aiuppa, A. (2007). The use of tree-rings and foliage as an archive of volcanogenic cation deposition. Environmental Pollution, 148(1), 48–61.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Paulo Melo for the field assistance in the capture of Mus musculus.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Segovia.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navarro-Sempere, A., Segovia, Y., Rodrigues, A.S. et al. First record on mercury accumulation in mice brain living in active volcanic environments: a cytochemical approach. Environ Geochem Health 43, 171–183 (2021). https://doi.org/10.1007/s10653-020-00690-4

Download citation

Keywords

  • Autometallography
  • Environmental contaminants
  • Mus musculus
  • Heavy metals
  • Neurotoxicity