Skip to main content

Advertisement

Log in

Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers (222Rn, 18O, Cl)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Lacustrine groundwater discharge (LGD) can play an important role in water and contaminant mass balance of lakes. Dongting Lake is the second largest fresh lake in China which is connected to Yangtze River and has quite prominent ecological status and function within Yangtze River basin. However, the effect of groundwater discharge on the balance of water and contaminant in Dongting Lake has long been overlooked. This study estimated the groundwater discharge and associated contaminants input into Dongting Lake during the dry season using multiple tracers (222Rn, 18O, Cl). After sensitivity analysis of different models, it is found that the result of 222Rn mass balance model is the most reliable. Based on the 222Rn mass balance model, the groundwater discharge rate is estimated to be 73.94 mm/d and the contribution of LGD to water balance is 10.94%. As the main nutrient components, NH3-N, P and Si from groundwater input account for 23.65%, 5.12% and 30.15%  % of the total input, respectively. As the main heavy metal components, Fe, Mn and As from groundwater input all account for more than 50% of the total input. Although the LGD rate is relatively small, the contaminant input from LGD is significant enough, which may be a potential threat to the ecological stability of Dongting Lake. In this study, the mass balance models of multiple tracers were integrated to understand the role of groundwater in maintaining the water balance and pollution status of Dongting Lake, which has certain reference significance for the LGD study in plain lakes or reservoirs with complex water systems in humid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution. Rotterdam: AA Balkema.

    Google Scholar 

  • Baker, J. L. (2007). Groundwater contribution to Sylvan Lake, Alberta, Canada. Calgary, Alberta: University of Calgary.

    Google Scholar 

  • Bao, W.-M., Hu, H.-Y., Qu, S.-M., & Wang, T. (2007). Application of stable isotope method to the water balance of lakes (in Chinese). Yellow River, 29(8), 29–31.

    Google Scholar 

  • Boudreau, B. P. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochimica et Cosmochimica Acta, 60(16), 3139–3142.

    Article  CAS  Google Scholar 

  • Burnett, W. C., Kim, G., & Lane-Smith, D. (2001). A continuous monitor for assessment of Rn-222 in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry, 249, 167–172.

    Article  CAS  Google Scholar 

  • Burnett, W. C., Peterson, R. N., Chanyotha, S., Wattayakorn, G., & Ryan, B. (2013). Using high-resolution in situ radon measurements to determine groundwater discharge at a remote location: Tonle Sap Lake, Cambodia. Journal of Radioanalytical and Nuclear Chemistry, 296(1), 97–103. https://doi.org/10.1007/s10967-012-1914-8.

    Article  CAS  Google Scholar 

  • Choi, K.-S., & Blood, E. (1999). Modeling developed coastal watersheds with the agricultural non-point source model. Journal of the American Water Resources Association, 35(2), 233–244.

    Article  Google Scholar 

  • Corbett, D. R., Burnett, W. C., Cable, P. H., & Clark, S. B. (1997). Radon tracing of groundwater input into Par Pond, Savannah River site. Journal of Hydrology, 203, 209–227. https://doi.org/10.1016/S0022-1694(97)00103-0.

    Article  Google Scholar 

  • Corbett, D. R., Burnett, W. C., Cable, P. H., & Clark, S. B. (1998). A multiple approach to the determination of radon fluxes from sediments. Radioanal Nucl Chem, 236(1–2), 247–253. https://doi.org/10.1007/BF02386351.

    Article  CAS  Google Scholar 

  • Dimova, N. T., & Burnett, W. C. (2011). Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnology and Oceanography, 56, 486–494. https://doi.org/10.4319/lo.2011.56.2.0486.

    Article  CAS  Google Scholar 

  • Dimova, N. T., Burnett, W. C., Chanton, J. P., & Corbett, J. E. (2013). Application of radon-222 to investigate groundwater discharge into small shallow lakes. Journal of Hydrology, 486, 112–122. https://doi.org/10.1016/j.jhydrol.2013.01.043.

    Article  CAS  Google Scholar 

  • Gao, Y., Xie, Y.-H., & Zou, D.-S. (2019). Hydrological regime change and its ecological responses in East Dongting Lake, China. Ecohydrology & Hydrobiology. https://doi.org/10.1016/j.ecohyd.2019.07.003.

    Article  Google Scholar 

  • Gat, J. R. (2000). Atmospheric water balance — The isotopic perspective. Hydrological Processes. https://doi.org/10.1002/1099-1085(20000615)14:8%3C1357:AID-HYP986%3E3.0.CO;2-7.

    Article  Google Scholar 

  • Gates, J. B., Edmunds, W. M., Darling, W. G., Ma, J.-Z., Pang, Z.-H., & Adam, A. Y. (2008). Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Applied Geochemistry, 23(12), 3519–3534.

    Article  CAS  Google Scholar 

  • Gibson, J., Prepas, E., & McEachern, P. (2002). Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of Boreal lakes. Journal of Hydrology, 262, 128–144.

    Article  Google Scholar 

  • Gleeson, T., Novakowski, K., Cook, P. G., & Kyser, T. K. (2009). Constraining groundwater discharge in a large watershed: integrated isotopic, hydraulic, and thermal data from the Canadian Shield. Water Resource Research, 45, W08402. https://doi.org/10.1029/2008WR007622.

    Article  Google Scholar 

  • Guo, J., Lian, H., Li, D.-Q., Huang, D.-Z., & Wang, C. M. (2019). Pollution status and source analysis of the water environment in Dongting Lake (in Chinese). Journal of Hydroecology, 40(04), 1–7. https://doi.org/10.15928/j.1674-3075.2019.04.001.

    Article  Google Scholar 

  • Gurrieri, J. T., & Furniss, G. (2004). Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods. Journal of Hydrology, 297(1–4), 187–208. https://doi.org/10.1016/j.jhydrol.

    Article  CAS  Google Scholar 

  • Harvey, F. E., Rudolph, D. L., & Frape, S. K. (2000). Estimating ground water flux into large lakes: Application in the Hamilton Harbor, western Lake Ontario. Ground Water, 38, 550–565.

    Article  CAS  Google Scholar 

  • Hu, C., Li, F., Xie, Y.-H., Deng, Z.-M., & Chen, X.-H. (2018). Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake. Physics and Chemistry of the Earth, 103, 28–34. https://doi.org/10.1016/j.pce.2017.04.001.

    Article  Google Scholar 

  • Huang, Y.-M. (2013). Study of variable characteristics of Stable Water Isotope composition in water cycle and its influence mechanism in the Dongting Lake Basin. Hunan Normal University.

  • Huang, D.-F., Yang, S.-Z., & Liu, Z.-Q. (1965). Lake Geology of the Three Large Freshwater Lakes in the Lower Reaches of the Yangtze River and Its Formation and Development (in Chinese). Oceanologia et Limnologia Sinica, 7(4), 396–426.

    Google Scholar 

  • Hunan Geological Survey Institute. (2016). Investigation and evaluation of groundwater resources and environmental problems in Jianghan-Dongting Plain (Hunan) Report.

  • Jacob, H., & Sonntag, C. (1991). An 8 year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg. Germany. Tellus, 43(3), 291–300.

    Article  Google Scholar 

  • Jiang, J.-H., & Huang, Q. (2004). Analysis of the situation and cause of ecological and environmental degeneration of the Dongting Lake (in Chinese). Ecological Environment, 2, 277–280. https://doi.org/10.16258/j.cnki.1674-5906.2004.02.044.

    Article  Google Scholar 

  • Kluge, T., Von Rohden, C., Sonntag, P., Lorenz, S., Wieser, M., Aeschbach-Hertig, W., et al. (2012). Localising and quantifying groundwater inflow into lakes using high-precision 222Rn profiles. Journal of Hydrology, 450–451, 70–81. https://doi.org/10.1016/j.jhydrol.2012.05.026.

    Article  CAS  Google Scholar 

  • Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P., & Valley, J. W. (1990). Estimating groundwater exchange with lakes: 1, the stable isotope mass balance method. Water Resource Research, 26(10), 2445–2453.

    CAS  Google Scholar 

  • Li, Y., Li, Z.-F., & Xi, Q. (2013). Parameter sensitivity analysis of runoff Simulation and model adaptability Research based on HSPF (in Chinese). Environmental science, 34(06), 2139–2145. https://doi.org/10.13227/j.hjkx.2013.06.008.

    Article  Google Scholar 

  • Lu, C., Jia, Y.-F., Jing, L., Zeng, Q., Lei, J.-L., et al. (2018). Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China. Journal of Hydrology, 559, 932–941. https://doi.org/10.1016/j.jhydrol.2018.03.004.

    Article  Google Scholar 

  • Luo, X., Jiao, J.-J., Wang, X.-S., & Liu, K. (2016). Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China. Journal of Hydrology, 534, 87–103. https://doi.org/10.1016/j.jhydrol.2015.12.051.

    Article  CAS  Google Scholar 

  • Luo, X., Kuang, X.-X., Jiao, J.-J., Liang, S.-H., Mao, R., Zhang, X.-L., et al. (2018). Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai-Tibet Plateau: using 222Rn and stable isotopes. Hydrology and Earth System Sciences, 22, 5579–5598. https://doi.org/10.5194/hess-22-5579-2018.

    Article  Google Scholar 

  • MacIntyre, S., Wanninkhof, R., & Chanton, J. (1995). Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In Biogenic trace gases: Measuring emissions from soil and water (Vol. 5297). New York: Wiley-Blackwell.

  • Pan, X.-Z. (2019). Chemical Composition Characteristics and Causes of Atmospheric Precipitation in Yiyang City. Guangdong Chemical Industry, 46(09), 122–123.

    Google Scholar 

  • Petermann, E., Gibson, J. J., Knoller, K., Pannier, T., Weiss, H., & Schubert, M. (2018). Determination of groundwater exchange rates and water residence time of groundwater-fed lakes based on stable isotopes of water (18O, 2H) and radon (222Rn) mass balances. Hydrological Processes. https://doi.org/10.1002/hyp.11456.

    Article  Google Scholar 

  • Ren, X.-Y., Du, Y., & Wang, X.-L. (2006). Study on the wetlands degeneration in South Dongting Lake (in Chinese). Journal of Central China Normal University (Natural Sciences), 01, 128–131. https://doi.org/10.19603/j.cnki.1000-1190.2006.01.033.

    Article  Google Scholar 

  • Rosenberry, D. O., Lewandowski, J., Meinikmann, K., & Nützmann, G. (2015). Groundwater — The disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology. Hydrological Processes, 29, 2895–2921. https://doi.org/10.1002/hyp.10403.

    Article  Google Scholar 

  • Scardi, M., & Harding, L. W. (1999). Developing an empirical model of phytoplankton primary production: a neural network case study. Ecological Modelling, 120(2), 213–223.

    Article  Google Scholar 

  • Schmidt, A., Gibson, J. J., Santos, I. R., Schubert, M., & Tattrie, K. (2009). The contribution of groundwater discharge to the overall water budget of Boreal lakes in Alberta/Canada estimated from a radon mass balance. Hydrology and Earth System Sciences Discussions, 6, 4989–5018. https://doi.org/10.5194/hessd-6-4989-2009.

    Article  Google Scholar 

  • Schubert, M., Scholten, J., Schmidt, A., Comanducci, J. F., Mai, K. P., et al. (2014). Submarine Groundwater Discharge at a Single Spot Location: Evaluation of Different Detection Approaches. Water, 6, 584–601.

    Article  Google Scholar 

  • Schulz, H. D. (2006). Quantification of early diagenesis: Dissolved constituents in pore water and signals in the solid phase. In H. D. Schulz & M. Zabel (Eds.), Marine geochemistry (pp. 73–124). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Stets, E. G., Winter, T. C., Rosenberry, D. O., & Striegl, R. G. (2010). Quantification of surface water and groundwater flows to open - and closed - basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resource Research, 46, W03515. https://doi.org/10.1029/2009WR007793.

    Article  CAS  Google Scholar 

  • Tian, Y., Lei, X.-H., Jiang, Y.-Z., & Li, W..(2010). Comment on parameter sensitivity analysis of hydrological model in Chinese. Journal of China Hydrology, 30(4), 9–12.

  • Vanek, V. (1987). The interactions between lake and groundwater and their ecological significance. Stygologia, 3, 1–23.

    Google Scholar 

  • Yi, P.-L., Chen, H., Li, Y., Jin, Z.-B., Jin, H.-J., Chen, X.-B., et al. (2018). Evaluation of groundwater discharge into surface water by using Radon-222 in the Source Area of the Yellow River, Qinghai-Tibet Plateau. Journal of Environmental Radioactivity, 192, 257–266. https://doi.org/10.1016/j.jenvrad.2018.07.003.

    Article  CAS  Google Scholar 

  • Yu, Y.-W., Mei, X.-F., Dai, Z.-J., Gao, J.-J., Li, J.-B., Wang, J., et al. (2018). Hydromorphological processes of Dongting Lake in China between 1951 and 2014. Journal of Hydrology, 562, 254–266. https://doi.org/10.1016/j.jhydrol.2018.05.015.

    Article  Google Scholar 

  • Yuan, Z.-K., & Kuang, J.-J. (2009). Degradation of natural wetland in Dongting Lake and its cause analysis (in Chinese). Yangtze River, 40(14), 32–34. https://doi.org/10.16232/j.cnki.1001-4179.2009.14.002.

    Article  Google Scholar 

  • Zhang, J., & Zhai, H.-J. (2011). Water resources protection plan for Dongting Lake area. Yangtze River, 42(02), 56–58. https://doi.org/10.16232/2011.02.024.

    Article  CAS  Google Scholar 

  • Zou, W.-F. (1989). Relationship between soil gleization and geological features in Dongting Lake area (in Chinese). Journal of Natural Science of Hunan Normal University, 12(1), 88–93.

    Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the National Natural Science Foundation of China (Nos. 41907173, 41630318), Project of China Geological Survey (Nos. DD20190263, 2019040022) and Research Program for Geological Processes, Resources and Environment in the Yangtze River Basin (CUGCJ1702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Du, Y., Deng, Y. et al. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers (222Rn, 18O, Cl). Environ Geochem Health 43, 1239–1255 (2021). https://doi.org/10.1007/s10653-020-00687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00687-z

Keywords